
DynamicProgramming

September 17, 2018

1 Lecture 11: Dynamic Programming

CBIO (CSCI) 4835/6835: Introduction to Computational Biology

1.1 Overview and Objectives

We’ve so far discussed sequence alignment from the perspective of distance metrics: Hamming
distance and edit distance in particular. However, on the latter point we’ve been coy; how is edit
distance actually computed for arbitrary sequences? How does one decide on the optimal align-
ment, particularly when using different scoring matrices? We’ll go over how all these concepts
are incorporated around the concept of dynamic programming, and how this allows you to align
arbitrary sequences in an optimal way.

By the end of this lecture, you should be able to:

• Describe how dynamic programming works and what its runtime properties are
• Relate dynamic programming to the Manhattan Tourist problem, and why it provides the

optimal solution
• Compute the edit distance for two sequences

1.2 Part 1: Change, Revisited

Remember the Change Problem?
Say we want to provide change totaling 97 cents.
Lots of different coin combinations you could use, but if we wanted to use as few coins as

possible:

• 3 quarters (75 cents)
• 2 dimes (20 cents)
• 2 pennies (2 cents)

1.2.1 Two Questions

1: How do we know this is the fewest possible number of coins?
2: Can we generalize to arbitrary denominations (e.g. 3 cent pieces, 9 cent pieces, etc)?

1



change1

change2

1.2.2 Formally

Problem: Convert some amount of money M into the given denominations, using the fewest
possible number of coins.

Input: Amount of money M, and an array of d denominations ~c = (c1, c2, ..., cd), sorted in
decreasing order (so c1 > c2 > ... > cd).

Output: A list of d integers, i1, i2, ..., id, such that
c1i1 + c2i2 + ... + cdid = M
and
i1 + i2 + ... + id is as small as possible.

1.2.3 Yay, Equations. . .

Let’s look at an example.

• Given: The denominations~c = (1, 3, 5) (so d = 3)
• Problem: What is the minimum number of coins needed to make each of the following

values for M?

(hopefully, you can see only 1 coin each is needed to make the values M = 1, M = 3, and
M = 5)

How about for the other values?
You’ll need 2 coins for M = 2, M = 4, M = 6, M = 8, and M = 10.
What are the coins?
See any patterns yet?
How about the remaining values?
3 coins each for M = 7 and M = 9.
See the pattern yet?

1.2.4 Recurrence Relations

A recurrence relation is, generally speaking, an equation that relies on previous values of the same
equation (future values are functions of previous values).

What examples of common problems fall under this category?

2



change3

recurrence3

• Differential Equations
• Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21. . .
f (n) = f (n− 1) + f (n− 2)
So, for our example of having 3 denominations, our recurrence relation looks something like

this:

• If M = 1, M = 3, or M = 5, minNumCoins is 0 + 1, so we get 1. These “special cases” are
referred to in recurrence relations as base cases.

• If M = 2, M = 4, M = 6, or M = 8, these all reduce to the base cases, with an added +1, so
each of these evaluates to 2.

• Finally, if M = 7 or M = 9, these are reduced to one of the above cases first (+1), then one of
the base cases (+1), for a total of 3.

1.2.5 So, in general

What would this recurrence relation look like for the general case of d denominations?
(see any problems yet?)

1.2.6 Example, Part Deux

Let’s say M = 77, and our available denominations are ~c = (1, 3, 7). How does this recurrence
relation unfold?

Well. . .
Notice how many times that “70” appeared?
The reason it was highlighted in a red circle is to draw attention to the fact that it’s being

re-computed at every one of those steps.

3



recurrencec

depth1

depth2

depth3

4



depth4

depthn

5



1.2.7 So many repeated calculations!

At multiple levels of the recurrence tree, it’s redoing the same calculations over and over.

• In our example of M = 77, ~c = (1, 3, 7), the optimal coin combination for 70 is computed 9
separate times.

• The optimal coin combination for 50 cents is computed billions of times.

• How about the optimal coin combination for 3 cents? o_O

How can we improve the algorithm so we don’t waste so much time recomputing the same
values over and over?

1.3 Part 2: Dynamic Programming

The idea is pretty simple, actually: instead of re-computing values in our algorithm, let’s save the
results of each computation for all amounts 0 to M.

Therefore, we can just “look up” the answer for a value that’s already been computed.
This new approach should give us a runtime complexity of O(Md), where M is the amount of

money and d is the number of denominations (what was the runtime before?).
This is called dynamic programming.
Let’s look at a modification of the example from before, with M = 9 and~c = (1, 3, 7).
If that looked and felt a lot like what we were doing before, that’s not wrong!
Dynamic Programming does indeed closely resemble the recurrence relation it is intended to

replace.
The difference is, with the recurrence, we had to constantly recompute the “easier” values

farther down the tree, since we always started from the top.
With dynamic programming, it’s the other way around: we start at the bottom with the “eas-

ier” values, and build up to the more complex ones, using the solutions we obtain along the way.
In doing so, we avoid repetition.

1.4 Part 3: The Tourist in Manhattan

Imagine you’re a tourist in Manhattan.
You’re about to leave town (starting at the hotel), but on your way to the subway station, you

want to see as many attractions as possible (marked by the red stars).
Your time is limited–you can only move South or East. What’s the “best” path through town?

(meaning the one with the most attractions)

1.4.1 Formally

Yes, the Manhattan Tourist Problem is indeed a formal problem from Computer Science, and
specifically graph theory:

Problem: Find the optimal path in a [weighted] grid.
Input: A weighted grid G with two labeled vertices: a source (the starting point) and a sink (the

ending point).
Output: The optimal path through G, starting at the source and ending at the sink.

6

https://en.wikipedia.org/wiki/Travelling_salesman_problem


dp1

7



dp2

8



touristgrid

touristpaths

9



mtp

1.4.2 First attempt: the “greedy” approach

One reasonable first attempt, as I would have with the Change problem, would be a greedy ap-
proach: every time I have to make a decision, pick the best one available.

With the Manhattan Tourist Problem, this means that at each intersection, choose the direction
(south or east) that gives me immediate access to the most attractions.

What’s wrong with this approach?
It can miss the global optimum, if it chooses a route early on that diverts it away:
This is the optimal route, with a total weight of 22. However, what route would a greedy

approach choose?
The red route has only a global weight of 18, but the initial choice at the source–between 5 and

1–will push the greedy algorithm off course.

1.4.3 Dynamic Programming to the Rescue

Hopefully by now you’re already thinking “this sounds like something dynamic programming
could help with.”

• At each vertex (intersection) in the graph, we calculate the optimal score to get there
• A given vertex’s score is the maximum of the incoming edge weights + the previous vertex’s

score (sound familiar?)

The gold edges represent those which the algorithm selects as “optimal” for each vertex.
Once we’ve reached the sink, it’s a simple matter of backtracking along the gold edges to find

the optimal route (which we highlight in green here).

10



mtp1

mtp2

11



mtp3

mtp4

12



mtp5

mtp6

13



mtp7

mtp8

14



suboptimal1

suboptimal2

15



dpbasics1

1.4.4 Complexity

With the change problem, we said the runtime complexity of dynamic programming wasO(Md),
where M is the amount of money, and d is the number of denominations.

Let’s make this a bit more formal. We have a graph / matrix, and each intersection si,j has a
score according to the recurrence:

For a matrix with n rows and m columns, what is the complexity?
O(nm). Basically, we have to look at every element of the matrix.
But that’s still better than the recurrence relation we saw earlier!

1.5 Part 4: Sequence Alignment

So how does all this relate to sequence alignment? How does dynamic programming play into
finding the longest common subsequence of two polypeptides or nucleic acid sequences?

Given two sequences, let’s use dynamic programming to find their best alignment.
v: ATCTGATC
w: TGCATAC
Our nucleotide string v has length 8, and w has length 7. How can we align these two se-

quences optimally?

1.5.1 Alignment Matrix

We can represent these strings along the rows and columns of an alignment matrix.
Assign one sequence to the rows, and one sequence to the columns.
At each intersection / vertex, we have three options: - Go south (insertion / deletion) - Go east

(deletion / deletion) - Go south-east (match / mismatch)

16



dpbasics2

17



dpbasics3

18



dpbasics4

19



dpbasics5

20



dpbasics6

21



dpbasics7

dpruntime

22



seqalign

23



subseqalign

Every diagonal movement represents a match. We can immediately see all our common sub-
sequences this way:

Now, we just need to join up as many of these aligned subsequences as possible to make the
longest common subsequence, and hence, the optimal alignment.

The full path, from source (upper left) to sink (bottom right), represents a common sequence.

1.5.2 Using the Alignment Matrix for Edit Distance

• Every alignment of two sequences corresponds to a path in the alignment matrix from source
to sink

• Horizontal and vertical edges correspond to indels (insertions and deletions)

• Diagonal edges correspond to matches and mismatches

1.5.3 Dynamic Programming for Sequence Alignment

Let’s see how this would play out algorithmically. Here’s an example:
v = ATCGTAC
w = ATGTTAC
One possible alignment of the two sequences might look like this (v on top, w on bottom)
So the corresponding alignment matrix would have a path from source to sink like this:
Programmatically, it would follow these steps.

24



fullalign

alignment

25



alignmentmatrix

26



dpstep1

27



sij

Step 1: Initialize the 0th row and 0th column to be all 0s.
Step 2: Use the following recurrence formula to calculate si,j for each i and j in the matrix:

• Top: a match (or mismatch)
• Middle: a deletion (with respect to v)
• Bottom: an insertion (with respect to v)

You’ll pretty much run Step 2 over and over until the matrix is filled.
You’ll look for any matches first (in red), then fill in the indels.
We’ve filled the alignment matrix! Now how do we assemble the final, optimal alignment of

the two sequences?
Start at the sink and follow the arrows back!

1.5.4 Pseudocode

1.5.5 Some final thoughts on Dynamic Programming

• How could we set up this problem in Python? What would the data structures be?

• Remember edit distance? It’s the measure of how different two sequences are. By contrast,
the alignment score from dynamic programming is a similarity score. If edit distance is 0,
what do we expect the alignment score to be?

• How could we modify the scoring procedure in dynamic programming to allow for scoring
matrices like PAM and BLOSUM?

1.6 Administrivia

• Grades for Assignments 1 and 2 are on eLC! Ping me with questions.

• If you’re struggling with the assignments, let’s meet and go over these questions.

• Assignment 3 is out, and will be the last assignment before the “midterm”.

• Regarding the midterm–does everyone have a laptop they could bring to class for the exam?

28



dpstep2

29



dpstep3

30



dpstep4

31



dpstep5

32



dpstep6

33



dpstep7

34



dpstep8

35



dpstep9

combinedalignment

36



pseudocode

1.7 Additional Resources

1. Compeau, Phillip. An Introduction to Bioinformatics. Dynamic Programming: Edit Distance,
Part 1 and Part 2.

37

http://compeau.cbd.cmu.edu/teaching/jones-pevzner-slides/edit-distance-part-1/
http://compeau.cbd.cmu.edu/teaching/jones-pevzner-slides/edit-distance-part-2/

