
Lecture2

August 15, 2018

1 Lecture 2: Command Line Basics

CBIO (CSCI) 4835/6835: Introduction to Computational Biology

1.1 Overview and Objectives

In this lecture, we’ll eschew all things Python and Biology, and focus entirely on the step before
either of these: becoming familiar with the command line (or command prompt). By the end of
this lecture, you should be able to:

• Name the different kinds of command line “shells”
• Navigate through the folders of a filesystem
• Perform basic text parsing using bash commands

1.2 Part 1: BASH Basics

If you’ve never used a command-line before. . . Don’t be intimidated!

1.2.1 Bash is to command prompts as Windows is to operating systems

Other command prompts include - csh (some would say the original: the “C-shell” - bash
(“bourne-again” shell; tends to be default on most Linux and macOS systems) - ksh (Korn shell) -
zsh (Z shell)

1.2.2 Think of the fancy point-and-click user-interfaces as running commands on a prompt
behind-the-scenes whenever you click something

1.2.3 I highly recommend either Linux (Ubuntu, Mint, RedHat) or macOS. The Windows MS-
DOS prompt is something else entirely.

If you’re on a Windows machine, you can either: - Activate the Ubuntu shell (Windows
10 only) https://msdn.microsoft.com/en-us/commandline/wsl/install_guide - Install Cygwin
https://www.cygwin.com/ - Install VirtualBox (https://www.virtualbox.org/wiki/VirtualBox)
and run an Ubuntu virtual machine inside - Go to the computer labs (RedHat or macOS will work)

As of Windows 10, there is now a “bash subsystem” you can enable which is a fully-functional
bash command prompt!

Follow these instructions: https://docs.microsoft.com/en-us/windows/wsl/install-win10
Once the subsystem is installed, you can configure it following these instructions:

https://docs.microsoft.com/en-us/windows/wsl/initialize-distro

1

cmdprompt

I’d highly recommend this! You’ll be able to tinker with the command line through Jupyter-
Hub, but it’s really nice to have on your own machine.

I have a macOS laptop, an Ubuntu workstation, a bunch of RedHat servers, and a Windows
10 home desktop.

I’m most at home with either macOS or Ubuntu.
It’s like learning another language: you’ll only get better at it if you immerse yourself in it,

even when you don’t want to.

1.2.4 Diving in!

You’ve fired up the command prompt (or Terminal in macOS). How do you see what’s in the
current folder?

1.2.5 ls

Allows you to view the contents of the current directory–folders and files.
But how do we tell the difference between the two? Use an optional -l flag.

1.2.6 (aside: “flags” are options to commands that slightly tweak their behavior to account for
different user intentions–like “quit” versus “force quit”)

Anything that starts with a d on the left is a folder (or directory), otherwise it’s a file.
Ok, that’s cool. I can tell what is what where I currently am. . . . but wait, how do I even know

where I am?

1.2.7 pwd

Pretty straightforward–stands for Print Working Directory. Gives you the full path to where you
are currently working. Not really any other needed optional flags.

Great! Now I know where I am, and what is what where I am. How do I move somewhere
else?

2

folders

This would be the same thing as double-clicking a folder to move into it.
You’ll notice the output of the ls command has now changed, which hopefully isn’t surprising.
Since we’ve Changed Directories with the cd command–you essentially double-clicked the

“Music” folder–now we’re in a different folder with different contents; in this case, a lone “iTunes”
folder.

Folders within folders represent a recursive hierarchy. We won’t delve too much into this
concept, except to say that, unless you’re in the root directory (/ on Linux, C:\ on Windows),
there is always a parent directory–the enclosing folder around the folder you are currently in.

This gives rise to a hierarchical structure of folders.
Therefore, while you can always change to a very specific directory by supplying the full path–
–I can also navigate to the parent folder of my current location, irrespective of my specific

location, using the special .. notation.

1.2.8 cd ..

Takes you up one level to the parent directory of where you currently are.

1.2.9 Relative paths vs Absolute paths

It’s important to distinguish relative versus absolute paths when you’re changing directories.

• A relative path is one that is relative (hence, the name) to your current location. The “..”
path is a good example: it means “go to the parent directory of wherever I am now”. That
“wherever I am now” is the relative part, so typing “cd ..” will put you in a different parent
directory depending on where you start.

3

• An absolute path is one that is always the same, no matter where you start. For instance,
typing “cd /home/squinn” will always always take me to the “/home/squinn” folder, no
matter where I was when I typed the command.

1.2.10 Relative or Absolute?

..
/tmp/file.txt
some/folder/file.txt
Found the pattern yet?
Anything with a preceding / is an absolute path; otherwise, it is considered relative.
Let’s see some other examples!
What prints out? - ~/ - /home/squinn - /home/squinn/teaching -

/home/squinn/teaching/4835 - An Error
What prints out? - hello.txt - *.txt - hello.txt lecture - An Error

1.2.11 Spacing Out

du - disk usage of files/directores
df - usage of full disk

1.2.12 Dude, where’s my stuff?

From time to time, you’ll probably be wondering where you can find certain things.

• locate: find a file system wide. This requires a pre-built database of your filesystem, so you
may need to run updatedb first, and every time you install something new. But it’s super
efficient.

• find: search directory tree. This does an actual manual search of your hard disk every time it
runs, so it can be really slow if you search absolutely everything. But consequently it doesn’t
require rebuilding a database every time you add a new file.

• which: print location of a command. Let’s say you’re running a command (like python) and
want to know where it’s installed on your computer. You can saw which python and it will
tell you.

• man: print manual page of a command. “Manual pages”, or “man pages”, are the built-in
linux manuals for all the commands you could ever need. Just type man <command> to learn
more than you ever cared to know about how to use it!

1.2.13 Save the Environment

“Environment variables” are ways of storing little bits of information for you to re-use in your
commands. We’ll see a version of this in Python, too!

NAME=value: set NAME equal to value No spaces around equals
export NAME=value: set NAME equal to value and make it stick
\$: dereference variable. This is a fancy way of saying “use this variable in something useful.”

As an example:

4

1.2.14 Getting at your variables

Which does not print the value of X? - echo $X - echo ${X} - echo '$X' - echo "$X"

1.2.15 Capturing Output

cmd evaluates to output of cmd
It’s a little tricky! The key is to notice the little “backtick” operators–these things “‘”–that

enclose the command you want to run.
Then mentally substitute that command in for its variable, and hopefully you kinda see how

it works.

1.2.16 Your Environment

env list all set environment variables (the variables we defined from before)
PATH where shell searches for commands. It is VERY IMPORTANT that you leave this variable

alone unless you know what you’re doing. Although it’s kind of inevitable that everyone who uses
the command line nukes this variable accidentally at least once. . .

LD_LIBRARY_PATH library search path (don’t worry about this too much)
PYTHONPATH where python searches for modules (also don’t worry about this, especially if

you just use JupyterHub for everything)
.bashrc initialization file for bash - set PATH etc. This is like a “startup” file that’s run every

time you open the command prompt, so if there are any variables you want to take on specific
values every single time you open up a terminal, this is the place to set them.

1.2.17 History

After you’ve been using the terminal for awhile, you may want to look at all the commands you’ve
run! Or perhaps it took you awhile to figure out exactly how to run a command, and a few
days/weeks/months later you find you need to run that command again. There are ways of
looking into your command history:

history show commands previously issued
up arrow cycle through previous commands
Ctrl-R search through history for command AWESOME
.bash_history file that stores the history
HISTCONTROL environment variable that sets history options: ignoredups
HISTSIZE size of history buffer

1.2.18 Shortcuts

Some clever shortcuts on the command line. By definition, they’re not necessary, but they can
make your work more efficient.

Tab autocomplete
Ctrl-D EOF/logout/exit
Ctrl-A go to beginning of line
Ctrl-E go to end of line
alias new=cmd. This is a fun one: if you don’t like how certain commands are named, you can

make up your own!
which is the output of ls -l that we saw earlier!

5

1.2.19 Commands

The first word you type is the program you want to run. bash will search PATH for an appropri-
ately named executable and run it with the specified arguments.

Some example commands we’ll be using a lot:

• ipython - start interactive python shell (more later)
• ssh hostname - connect to hostname
• passwd - change your password
• nano - a user-friendly text editor

1.3 ssh into jupyterhub.cs.uga.edu and change your password

1.4 Part 2: Text Manipulation

First, a quick review: some of the commands we just covered that will be coming back here.

• ls - list files
• cd - change directory
• pwd - print working (current) directory
• .. - special file that refers to parent directory
• . - the current directory
• cat file - NEW COMMAND: prints out the contents of the file
• more file - NEW COMMAND: gently prints out the contents of a file

1.4.1 I/O Redirection

“I/O” is a bit of technical slang for “input/output”. It refers to the things that go into a program,
and the things that come back out.

For example, the command echo "Hello, world!" can be considered a program–“echo”–with
input "Hello, world!". It’s just a type of program where the input and output are the same.

With the command line, we therefore refer to specific concepts known as standard input and
standard output. Don’t worry, this is pretty straightforward:

• Standard input means anything you’ve typed on the keyboard, and
• Standard output is anything that’s printed back inside the main command prompt window

So when you type echo "Hello, world!", the input is provided through standard input (since
you typed it), and the output is sent through standard output (since it appeared in the command
prompt right below the command you typed).

We can, if we want, redirect those inputs and outputs. For example: if we have a long sequence
of programs, perhaps we want the standard output of one program to be the input to the next one.

> send standard output to file
>> append to file
A quick exercise!
What prints out? - Hello - World - HelloWorld - HelloWorld - An Error
A slightly different example:
What prints out? - Hello - World - HelloWorld - HelloWorld - An Error

6

1.4.2 Pipes

A pipe (|) redirects the standard output of one program to the standard input of another. It’s like
you typed the output of the first program into the second. This allows us to chain several simple
programs together to do something more complicated.

wc is a very useful little command for “word counting”.
This means the text in h.txt has 1 line, 2 words, and 14 letters total.
But rather than feed the text into a file first, we could echo it and pipe it directly into the wc

command as input:
Same output! But no filename, because we skipped that step.

1.4.3 Simple Text Manipulation

A frequent part of computational biology is, sadly, futzing with data in text files. But with a little
bit of knowledge of text-processing command line programs, you can do a lot of this without even
using something like Python.

Some programs we’ve seen:

• cat: dump file to stdout
• more: paginated output (a nicer version of cat, basically)
• head: show first 10 lines
• tail: show last 10 lines
• wc: count lines/words/characters

Some new ones: - sort: sort file by line and print out (-n for numerical sort) - uniq: remove
adjacent duplicates (-c to count occurances) - cut: extract fixed width columns from file

Here’s a fun example that ties some of these commands up using pipes:
What is the first number to print out? - 1 - 2 - 3 - 4 - 5 - None of the above
A slight wrinkle:
What is the first number to print out? - 1 - 2 - 3 - 4 - 5 - None of the above

1.4.4 Advanced Text Manipulation

It’s great to be able to dump out text using cat, count words and letters with wc, and sort and
uniq-ify the outputs.

But what if I wanted to search a text file for a specific word? Or extract the third word of every
line in a file? Or pull out every line that started with the word “The”?

These are all a bit beyond the basic utilities we’ve described, so we have to explore some more
advanced programs.

In particular, we’re looking at these three commands:

• grep: search contents of file for expression
• sed: stream editor - perform substitutions
• awk: pattern scanning and processing, great for dealing with data in columns

We’ll spend a slide on each one.

7

1.4.5 grep

This searches a file’s contents for whatever pattern you specify. The command is organized this
way:

grep pattern file(s)
pattern can be any collection of letters that you want to match. The lines where the matches

are found (if any) are printed to standard out if grep finds any.
grep also has a few flags to change how it works:

• -r: recursive search
• -I: skip over binary files
• -s: suppress error messages
• -n: show line numbers
• -A: show N lines after match
• -B: show N lines before match

Yay exercise!
What is the first number to print out? - 1 - 2 - 3 - 4 - 5 - None of the above

1.4.6 sed

sed is a great search and replace command. If you’ve ever used “Find and Replace” in Microsoft
Word or something like that, this is the command-line version.

It works with this pattern:

• -i: replace in-place (overwrites input file; the default behavior without this flag is to print
the changes to standard output and leave the original file as-is)

Basically, I’m searching the file for letters or words that exactly match pattern, and then re-
placing those with whatever I put in replacement.

So! How about an exercise?
What is the first number to print out? - 1 - 2 - 3 - 4 - 5 - None of the above

1.4.7 awk

This is the single most advanced utility we’ll cover for the command line. I’m not overstating to
say knowledge and especially mastery of awk gets you jobs.

awk is pretty much a fully-functioning language unto itself, built for scanning, processing,
and transforming text data. It’s largely used to extract rows or columns of data according to
potentially-complex conditions, but it can do just about anything you’d like, really.

It processes a file line-by-line, and if a condition holds true, it runs a simple program on the
text in that line.

awk ‘optional condition {awk program}’ file * -Fx make x the field deliminator (default whites-
pace) * NF number of fields on current line * NR current record number * $0 full line * $N Nth
field

Before we get to exercises, let’s try a few things out.
Try these:
Hint: $1, $2, and similar refer to columns in the text (0-indexed!)

8

1.5 Exercises

Let’s walk through a couple of examples with some real files. You can download these off the
course website. In fact, you can even do it from the command line with wget!

• How many data points are in Spellman.csv?
• The first three letters of the systematic open reading frames are: ‘Y’ for yeast, the chromo-

some number, then the chromosome arm. In the dataset, how many ORFs from chromosome
A are there?

• How many are there from each chromosome?

– each chromosome arm?

• How many data points start with a positive expression value?
• What are the 10 data points with the highest initial expression values?

– Lowest?

• How many lines are there where expression values are continuously increasing for the first
3 time steps?

• Sorted by biggest increase?

1.6 More Exercises

• Create a pdb file from 1shs that consists of only ATOM records.
• Create a pdb with only ATOM records from chain A.
• How many carbon atoms are in this file?

1.7 Administrivia

• Did everyone finish the pre-test? It was due today before lecture.
https://docs.google.com/forms/d/1ka9yH5G3bOCfdJUTaeZXV2BdtvqqsiPaxnvKI2f4YK4/

• JupyterHub is up and running! Check to make sure that you can log in (instructions were
posted in Slack).

• Assignment 1 will also be released later today. Due in two weeks!

• Would today (11:30am - 1pm) be a better day for office hours?

1.8 Resources

• A BASH cheatsheet: http://eds-uga.github.io/cbio4835-fa18/notes/bash_cheatsheet.pdf

9

