

Introduction to High Performance Computing Using Sapelo2 at GACRC

Georgia Advanced Computing Resource Center
University of Georgia
Suchitra Pakala
pakala@uga.edu

Outline

- High Performance Computing (HPC)
- HPC at UGA GACRC
- Sapelo2 Cluster Overview
 - Architecture
 - Computing resources, Storage Environment
 - Software on Cluster
 - Job Submission Workflow
 - Access and Working with Sapleo2

High Performance Computing (HPC)

Cluster Computing

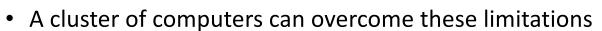
What is HPC?

High Performance Computing

- Practice of aggregating computing power
- Higher performance when compared to regular Desktop or Laptops
- Parallel processing for solving complex computational problems
- Using advanced applications programs efficiently, reliably and quickly

Also... Cluster Computing

• A cluster:


- Parallel or distributed processing system
- Consists of a collection of interconnected stand alone computers
- Working together as a single integrated computing resource
- Provide better system reliability and performance
- Appears to users as a single highly available system

Why use HPC?

- A single computer (processor) is limited in:
 - Memory
 - Speed
 - Overall performance

- Solves problems that cannot fit in a single processor's memory
- Reduces computational time to reasonable expectations
- Solves problems at finer resolution

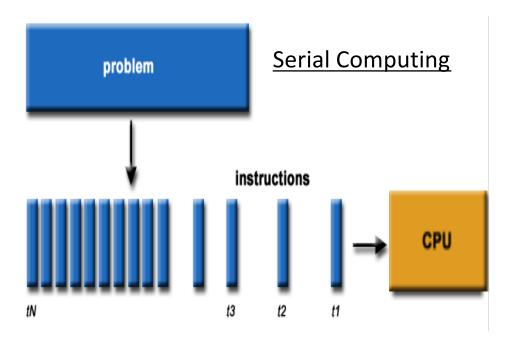
RESEARCH Open Access

Scaling bioinformatics applications on HPC

Mike Mikailov¹, Fu-Jyh Luo¹, Stuart Barkley¹, Lohit Valleru¹, Stephen Whitney¹, Zhichao Liu², Shraddha Thakkar², Weida Tong² and Nicholas Petrick^{1*}

From The 14th Annual MCBIOS Conference Little Rock, AR, USA. 23-25 March 2017

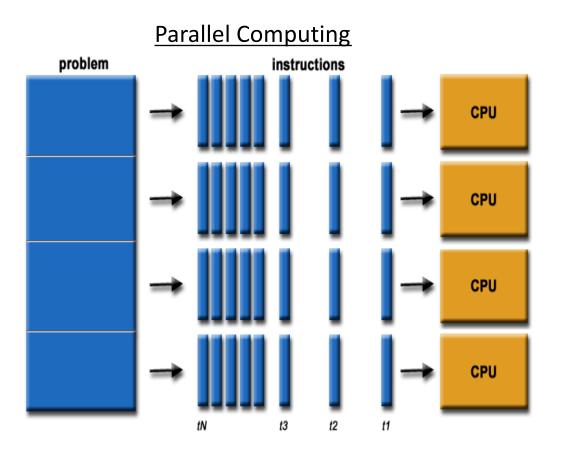
Results: BLAST jobs that hitherto failed or slogged inefficiently to completion now finish with speeds that characteristically reduce wallclock time from 27 days on 40 CPUs to a single day using 4104 tasks, each task utilizing eight CPUs and taking less than 7 minutes to complete.



Components of HPC

- Node Individual computer in a cluster
 - Eg: Login node, Transfer node
 - Individual nodes can work together, talk to each other
 - Faster problem solving
- Queue Collection of compute nodes for specific computing needs on a cluster
 - Eg: batch, highmem_q, inter_q, gpu_q
- Jobs User programs that run on a cluster
 - Managed through a queueing system (Torque/Moab)

HPC - Submitting Jobs :



Serial Computing

- A problem is broken into a discrete series of instructions
- Instructions are executed sequentially
- Executed on a single processor
- Only one instruction may execute at any moment in time

HPC - Submitting Jobs:

Parallel Computing

- A problem is broken into discrete parts that can be solved concurrently
- Each part is further broken down to a series of instructions
- Instructions from each part execute simultaneously on different processors
- An overall control/coordination mechanism is employed

Operating System: Linux

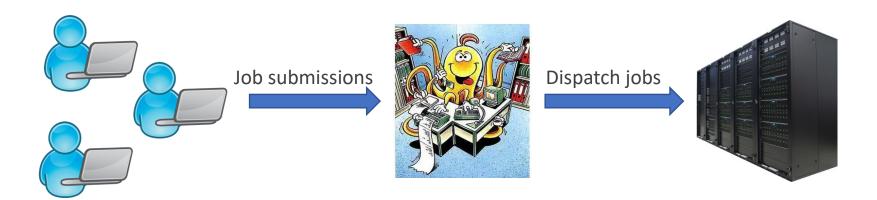
- Several distributions Ubuntu, CentOS, Fedora, RedHat, etc
- Open Source, Multi-user, Multi-tasking operating system
- Free, Stable, Secure, Portable

High Performance Computing at GACRC

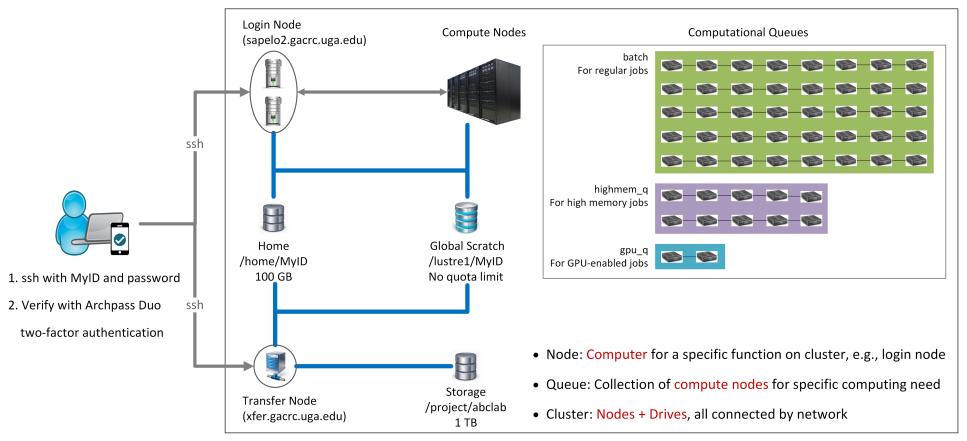
Sapelo2

<u>GACRC</u>

- We are the high-performance-computing (HPC) center at UGA
- We provide to the UGA research and education community an advanced computing environment:
 - HPC computing and networking infrastructure located at the Boyd Data Center
 - Comprehensive collection of scientific, engineering and business applications
 - Consulting and training services
- http://wiki.gacrc.uga.edu (GACRC Wiki)
- https://wiki.gacrc.uga.edu/wiki/Getting Help (GACRC Support)
- http://gacrc.uga.edu (GACRC Web)


Sapelo2 Overview

- Architecture
- General Information
- Computing resources
- Storage Environment
- Software on Cluster
- Job submission Workflow


Cluster

- Using a cluster involves 3 roles:
 - User(s): to submit jobs
 - Queueing System: to dispatch jobs to cluster, based on availability of resources
 - Cluster: to run jobs

Sapelo2 Cluster

Sapelo2: A Linux HPC cluster (64-bit Centos 7)

- Two Nodes:
 - Login node for batch job workflow: MyID@sapelo2.gacrc.uga.edu
 - Transfer node for data transferring: MyID@xfer.gacrc.uga.edu
- Three Directories:
 - Home: Landing spot; 100GB quota; Backed-up
 - Global Scratch: High performance job working space; NO quota; NOT backed-up
 - Storage: Temporary data parking; 1TB quota (for group); Backed-up (ONLY accessible from Transfer node!)
- Three Computational Queues: batch, highmem_q, gpu_q

Four Computational Queues

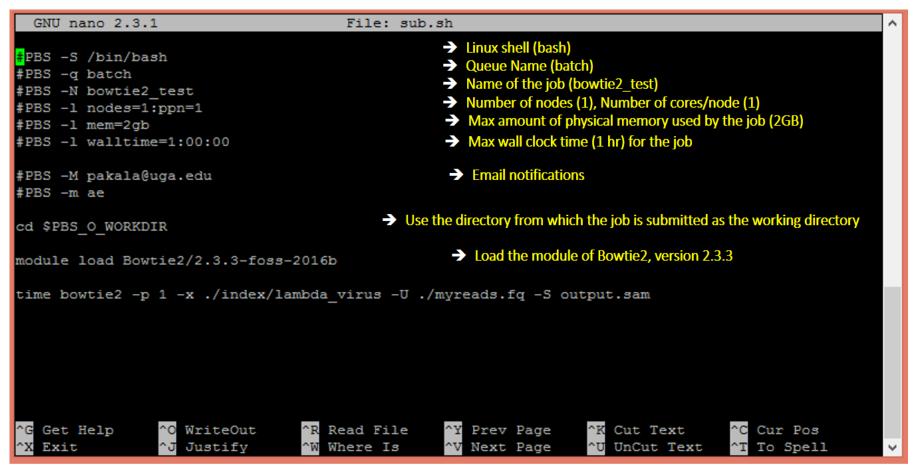
Queue	Node Feature	Total Nodes	RAM(GB) /Node	Max RAM(GB) /Single-node Job	Cores /Node	Processor Type	GPU Cards /Node	InfiniBand
batch	Intel	30	64	62	28	Intel Xeon		Yes
		42	192	188	32	Intel Xeon (Skylake)		
	AMD	90	128	125	48	AMD Opteron	N/A	
highmem_q	Intel/AMD	4/1	1024	997	28	Intel Xeon		
	AMD/Intel	4/1	512	503	48	AMD Opteron		
gpu_q	GPU	2	128	125	16	Intol Voor	8 NVIDIA K40	
		2	96/80	92/76	12	Intel Xeon	7 NVIDIA K20	
		4	192	188	32	Intel Xeon (Skylake)	1 NVDIA P100	
grpBuyin_q	variable							

Three Directories

Role	Directory	Intended Use	Quota	Accessible from	Backed-up	Notes
Home	/home/MyID	Static data: 1. Scripts, source codes 2. Local software	100GB	Login	Yes	
Global Scratch	/lustre1/MyID	Current job data: data being read/written by running jobs	No Limit	Transfer	No	User to clean up! Subject to deletion in 30 days
Storage	/project/abclab	Temporary data parking: non-current active data	1TB (Initial)	Transfer	Yes	Group sharing possible

Software on Cluster

- The cluster uses environment modules to define the various paths for software packages
- Software names are long and have a EasyBuild toolchain name associated to it
- Complete module name: Name/Version-toolchain, e.g., BLAST+/2.6.0-foss-2016b-Python-2.7.14
- More than 600 modules currently installed on cluster
- Out of these, around 260 modules are Bioinformatics applications AUGUSTUS, BamTools,
 BCFTools, BLAST, Canu, Cutadapt, Cufflinks, Tophat, Trinity, etc
- Others:
 - Compilers GNU, INTEL, PGI
 - Programming Anaconda, Java, Perl, Python, Matlab, etc
 - Chemistry, Engineering, Graphics, Statistics (R), etc



Job Submission Workflow

- Log on to Login node using MyID and password, and two-factor authentication with Archpass Duo: ssh
 MyID@sapelo2.gacrc.uga.edu
- On Login node, change directory to global scratch: cd /lustre1/MyID
- Create a working subdirectory for a job: mkdir./workDir
- Change directory to workDir: cd./workDir
- Transfer data from local computer to <u>workDir</u>: use **scp** or **SSH File Transfer** to connect Transfer node
 - Transfer data on cluster to workDir: log on to Transfer node and then use cp or mv
- Make a job submission script in workDir: nano./sub.sh
- Submit a job from workDir: qsub./sub.sh
- Check job status: qstat_me or Cancel a job: qdel JobID

Example: Job Submission Script

Submit a job using qsub

```
pakala@sapelo2-sub2 workdir$ pwd
/lustre1/pakala/workdir
pakala@sapelo2-sub2 workdir$ ls
index myreads.fq sub.sh
pakala@sapelo2-sub2 workdir$ qsub sub.sh
11743.sapelo2
```

sub.sh is job submission script to

- 1. specify computing resources:
- load software using ml load
- 3. run any Linux commands you want to run
- 4. run the software

Check job status using qstat_me

```
pakala@sapelo2-sub2 workdir$ qstat me
                                              Time Use S Queue
Job ID
                   Name
                                    User
11743.sapelo2
                  bowtie2 test
                                    pakala
                                              00:12:40 C batch
11744.sapelo2
                  bowtie2 test
                                    pakala
                                              00:05:17 R batch
11746.sapelo2
                   bowtie2 test
                                    pakala
                                              00:02:51 R batch
11747.sapelo2
                   bowtie2 test
                                    pakala
                                                     0 Q batch
```

R: job is running

C: job completed (or canceled or crashed) and is no longer running. (This status is displayed for 24 hours)

Q: job is pending, waiting for resources to become available

Note: "Time Use" is the CPU time, instead of the wall-clock time of your job staying on cluster!

Cancel job using qdel

```
pakala@sapelo2-sub2 workdir$ qdel 11746
pakala@sapelo2-sub2 workdir$ qstat me
Job ID
                                                Time Use S Queue
                                     User
                   Name
11743.sapelo2
                   bowtie2 test
                                     pakala
                                                00:12:40 C batch
11744.sapelo2
                   bowtie2 test
                                     pakala
                                                00:05:17 R batch
11746.sapelo2
                                                00:03:15_C batch
                   bowtie2 test
                                     pakala
11747.sapelo2
                   bowtie2 test
                                     pakala
                                                         Q batch
                                        job 11746 status is changed from R to C
```

C status will stay in list for 24 hour

How to request Sapelo2 User Account

Resources available on Sapelo2

Request Sapelo2 User Account

Sapelo2 cluster user account: MyID@sapelo2.gacrc.uga.edu

Note: A valid official UGA MyID is a MUST to create a user account!

- 1. The UGA PI uses the GACRC online form http://help.gacrc.uga.edu/userAcct.php to request a user account for a group member.
- 2. Once we received the request, we will verify it with the PI.
- 3. After verification by the PI, the new user will be required to attend a training session.
- 4. After the user attended training, we will provision a Sapelo account for the user.
- 5. A welcome letter is sent to the user once user account is ready.

Resources on Sapelo2 - GACRC Wiki

Main Page: http://wiki.gacrc.uga.edu

Running Jobs: https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2

Software: https://wiki.gacrc.uga.edu/wiki/Software

Transfer Files: https://wiki.gacrc.uga.edu/wiki/Transferring-Files

Linux Commands: https://wiki.gacrc.uga.edu/wiki/Command_List

Training: https://wiki.gacrc.uga.edu/wiki/Training

User Account Request: https://wiki.gacrc.uga.edu/wiki/User_Accounts

Support: https://wiki.gacrc.uga.edu/wiki/Getting-Help

Thank You!