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Dimensionality Reduction

* Reduce the number of random variables under consideration
* Reduce computational cost of downstream analysis
* Remove sources of noise in the data
Define an embedding of the data
Elucidate the manifold of the data

* We've covered several strategies so far




Principal Component Analysis (PCA)

1. Orthogonal projection of data
2. Lower-dimensional linear space known as the principal subspace
3. Variance of the projected data is maximized

Two definitions of PCA

Maximizing Variance Minimizing Reconstruction Error




Kernel PCA

* In kernel PCA, we consider data that have already undergone a
nonlinear transformation:

T e RP (%) € RM

* We now perform PCA on this new M-dimensional feature space




Sparse PCA

* We still want to maximize u;/Su;, subject to u;/u;=1
* ...and one more constraint: we want to minimize ||u|||,

* Formalize these constraints using Lagrangian multipliers

—_ ‘




Stochastic SVD (SSVD)

* Uses random projections to find close approximation to SVD

» Combination of probabilistic strategies to maximize convergence
likelihood

* Easily scalable to massive linear systems




A brief aside: SSVD

* Matrix A
* Find a low-rank approximation of A
* Basic dimensionality reduction

1A — QQYA| < e

Preconditioning




Approximating range of A

* INPUT: A, k, p
« OUTPUT: Q

1. Draw Gaussian n x k test matrix Q
2. Form productY =AQ
3. Orthogonalize columns of Y =»Q




Approximating SVD of A

* INPUT: Q
* OUTPUT: Singular vectors U

1. Form k x n matrix B=Q'A
2. Compute SVD of B=UZVT
3. Compute singular vectors U = QU




Empirical Results

* 1000X1000 Matrix

* Several runs of empirical
results (blue) to

theoretical lower bound
(red)

* Error seems to be
systemic




Power Iterations

* Affects decay of eigenvalues / singular values

Y = (AA*)TAQ




Empirical Results
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Why does this work?

* Three primary reasons:

1. Johnson-Lindenstrauss Lemma
* Low-dimensional embeddings preserve pairwise distances
(1 —e)llu—ol® < [[f(w) = F@)|* < (1 +e)]lu— o]
2. Concentration of measure

» Geometric interpretation of classical idea: regular functions of
independent random variables rarely deviate far from their
means

3. Preconditioning

* Condition number: how much change in output is produced
from change in input (relation to #1) K

* Q matrix lowers condition number while preserving overall | SN ‘
system

| Amax|




(and we're back) Dictionary Learning

* This gives the minimization
n

- 2. _ BO.|9 .

35 2 (19~ Al + @)
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where h promotes sparsity in the coefficients, and B is chosen from

a constraint set
* The general dictionary learning problem then follows

5(6,B) = o[|X — BO|[% + h(6) + g(B)

where specific choices of h and g are what differentiate the
different kinds of dictionary learning (e.g. hierarchical, K-SVD, etc)




Autoencoders

 "Self encode”

* ANNs with output = input
o: X —> F
v F > X

o - (o 2
¢,¢—argrqg{glllX (¥ 0 9)X||

encoder

decoder




Autoencoders

* Learn a “non-trivial” identity
function

* L ow-dimensional “code”

* No other assumptions

+

Very compact
representation g
No strong a priori .
form (flexible)

Difficult to interpret
Prone to “collapse”

 PCA: maximize variance /
minimize reconstruction
* Linearly independent
e Gaussian
* Dictionary Learning: sparse
code [ minimize reconstruction
* Nonlinear

* Kernel / Sparse PCA




Autoencoders

* Key point: autoencoders should be undercomplete
* Code dimension < input dimension

L(Z, g(f(Z)))

* L is some loss function penalizing g(f(x)) for being dissimilar from x

* If fand g are linear, and L is mean squared error, undercomplete AE
learns to span the same subspace as PCA

ol : _(dh o 2
qﬁ,w—argrqgl,gl X — (pop)X|

U = argmin|| X — UAU?||?




Sparse Autoencoders

* g(h) is decoder output
* h =f(x), encoder output
* (2 is sparsity penalty

* Note on regularizer

No straightforward “Typical” penalties can

Bayesian interpretation be viewed as a MAP
of regularizer approximation to

Bayesian infer E_’ —
with regularizjlljs ?7 L

priors over parameters

Regularized MAP then

o But autoencoder
maximizes:

regularization relies only
- on the data. It's more of

) — lOg p(f' ) . ] a “preference over

functions” than a prior.




Denoising Autoencoders

* Instead of learning

L(z,9(f(Z)))
L(Z,9(f(Z)))

where X is a corrupted version of x

e | earn

* Forces the autoencoder to learn the structure of p g4(X)
* Form of “stochastic encoder / decoder”




Denoising Autoencoders

* No longer deterministic!
* Given a hidden code h, minimize —10g€ Pgecoder (X|1)

Pencoder (h | m) Pdecoder (m | h’)




Denoising Autoencoders

* Generalize encoding function to encoding
distribution

pencoder(];‘f) = Pmodel (E‘f)
* Same with the de_goding distribution . Pencoder (B | ) Paccoder (Z | h)
pdecoder(f|h) = Pmodel (flh)

* Together, these comprise a stochastic
encoder and decoder




Denoising Autoencoders

* Define a corruption process, C
C(z|T)
* Autoencoder learns a reconstruction
distribution Preconstruct (x W)

1. Sample a training example x
2. Sample a corrupted version X from C
3. Use (x, X) as a training pair




Denoising Autoencoders

* Optimize
_EfNﬁdata (f)EjNC(ﬂf) logpdecoder(f‘h = f(fé))

Sample from training
set and compute
expectation

...with respect to learning the
uncorrupted data from the
encoded corrupted data

Expectation over
corrupted examples

* Easy choice of C

C(z]T) = N
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Embeddings

* Manifolds would seem to imply representation learning beyond a
simple low-dimensional code

* Autoencoders can learn
powerful relationships in this
regard

* Pose
* Position
* Affine transformations




Generative Models

* Go beyond learning x -> h, instead focused on learning p(x, h)

* Manifold learning with Autoencoders

* Variational Autoencoders (VAES)

* Deep Belief Networks (DBNs)

* Deep Restricted Boltzmann Machines (DBMs)
* Generative Adversarial Networks (GANS)

* Thursday!




Conclusions

* Autoencoders
* Multilayer perceptron (ANN) that is symmetric
e Output = input
* Goalistolearn a non-trivial identity function, or an undercomplete code h

 Sparse Autoencoders
* Include a sparsity constraint on the code

* Denoising Autoencoders
* Learn a mapping to de-corrupt data
* Include a corruption process C
 Equates to a traversal of the data manifold -> generative modeling primer




Course Details

* Projects!
* 3 presentations per day
* 9 teams—20 minutes hard speaking
time limit
* Presentations are the week after
Thanksgiving break

* Thursday is FULL
* Wednesday is ALMOST FULL

* First come, first serve!

Final Project Presentations

Final Project Presentations

Final Project Presentations

Final Project Deliverables Due
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