CSCl 4360/6360 Data Science

Autoencoders

The Neural Network Zoo pes=r=n

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

& Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

@ Hissen e o
© Probobistic Hidden cel
@ spiing Higden cel Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) ~ Gated Recurrent Unit (GRU)

e http://www.asimovinstitute.or . }@ %

@ watch input Output et

neUI’a| n tWOI’k Z00/ -
@ weroryceu AutoEncoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)
@ oifferent Memory Cell
Kernel
© convolution or Pool
Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

e\
0 &8
\V/

A

ST KK
Oy
\7/

Deep Convolutional Network (DCN) Deconvolutional Network (ON) Deep Convolutional Inverse Graphics Network (DCIGN)

DT
Ne/ONENEN

INGEICICTGE]

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) ~ Echo State Network (ESN)

i

Deep Residual Network (DRN) (KN) Support Vector Neural Turing

sz i e ke

http://www.asimovinstitute.org/neural-network-zoo/

The Neural Network Zoo pes=r=n

Input Cell 2016 Fiodor van Veen - asimovinstitute.org

@ Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

@ Hiddencel
© Frobablistic Hidden Cell
@ spiking Hidden Cell

P htt - = t't t Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) ~ Gated Recurrent Unit (GRU)
- 2 g 2 2
Output Cell
WWwWWw.asimovinstitute.or ® oo : A A8
.

@ Motch input Output Cell.
neural-network-zoo/ iy

@ oifrerent Memory

Uto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Markov Chain (MC) Hopfield Netw® Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (0BY

\V/

2

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

B

=
O/O\ >0

B

@

O
O

IXEICIXCTHCT
DT

o~
/O\
L g
/O\
Ny
O\

&~
/o\
L g
/O\
&~
>0

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) ~ Echo State Network (ESN)

YaYaYaY,
bl % @ %
\

Deep Residual Network (DRN) (KN) Support Vectc Neural Turing

sz i e ke

http://www.asimovinstitute.org/neural-network-zoo/

Dimensionality Reduction

* Reduce the number of random variables under consideration
* Reduce computational cost of downstream analysis
* Remove sources of noise in the data
Define an embedding of the data
Elucidate the manifold of the data

* We've covered several strategies so far

Principal Component Analysis (PCA)

1. Orthogonal projection of data
2. Lower-dimensional linear space known as the principal subspace
3. Variance of the projected data is maximized

Two definitions of PCA

Maximizing Variance Minimizing Reconstruction Error

Kernel PCA

* In kernel PCA, we consider data that have already undergone a
nonlinear transformation:

T e RP (%) € RM

* We now perform PCA on this new M-dimensional feature space

Sparse PCA

* We still want to maximize u;/Su;, subject to u;/u;=1
* ...and one more constraint: we want to minimize ||u|||,

* Formalize these constraints using Lagrangian multipliers

—_ ‘

Stochastic SVD (SSVD)

* Uses random projections to find close approximation to SVD

» Combination of probabilistic strategies to maximize convergence
likelihood

* Easily scalable to massive linear systems

A brief aside: SSVD

* Matrix A
* Find a low-rank approximation of A
* Basic dimensionality reduction

1A — QQYA| < e

Preconditioning

Approximating range of A

* INPUT: A, k, p
« OUTPUT: Q

1. Draw Gaussian n x k test matrix Q
2. Form productY =AQ
3. Orthogonalize columns of Y =»Q

Approximating SVD of A

* INPUT: Q
* OUTPUT: Singular vectors U

1. Form k x n matrix B=Q'A
2. Compute SVD of B=UZVT
3. Compute singular vectors U = QU

Empirical Results

* 1000X1000 Matrix

* Several runs of empirical
results (blue) to

theoretical lower bound
(red)

* Error seems to be
systemic

Power Iterations

* Affects decay of eigenvalues / singular values

Y = (AA*)TAQ

Empirical Results

Approximation error ey, Estimated Eigenvalues \; Approximation error ey W Estirpated ‘Singullar Vallues 0
— Minimal error (es]

T T T T

x“Exact” eigenvalue
o)\jforg=3
o\ forg=2
o ANjforg=1
* A for g =10

titi

QQ QR Q
([
W= O

Magnitude

Magnitude

Why does this work?

* Three primary reasons:

1. Johnson-Lindenstrauss Lemma
* Low-dimensional embeddings preserve pairwise distances
(1 —e)llu—ol® < [[f(w) = F@)|* < (1 +e)]lu— o]
2. Concentration of measure

» Geometric interpretation of classical idea: regular functions of
independent random variables rarely deviate far from their
means

3. Preconditioning

* Condition number: how much change in output is produced
from change in input (relation to #1) K

* Q matrix lowers condition number while preserving overall | SN ‘
system

| Amax|

(and we're back) Dictionary Learning

* This gives the minimization
n

- 2. _ BO.|9 .

35 2 (19~ Al + @)
1=

where h promotes sparsity in the coefficients, and B is chosen from

a constraint set
* The general dictionary learning problem then follows

5(6,B) = o[|X — BO|[% + h(6) + g(B)

where specific choices of h and g are what differentiate the
different kinds of dictionary learning (e.g. hierarchical, K-SVD, etc)

Autoencoders

 "Self encode”

* ANNs with output = input
o: X —> F
v F > X

o - (o 2
¢,¢—argrqg{glllX (¥ 0 9)X||

encoder

decoder

Autoencoders

* Learn a “non-trivial” identity
function

* L ow-dimensional “code”

* No other assumptions

+

Very compact
representation g
No strong a priori .
form (flexible)

Difficult to interpret
Prone to “collapse”

 PCA: maximize variance /
minimize reconstruction
* Linearly independent
e Gaussian
* Dictionary Learning: sparse
code [minimize reconstruction
* Nonlinear

* Kernel / Sparse PCA

Autoencoders

* Key point: autoencoders should be undercomplete
* Code dimension < input dimension

L(Z, g(f(Z)))

* L is some loss function penalizing g(f(x)) for being dissimilar from x

* If fand g are linear, and L is mean squared error, undercomplete AE
learns to span the same subspace as PCA

ol : _(dh o 2
qﬁ,w—argrqgl,gl X — (pop)X|

U = argmin|| X — UAU?||?

Sparse Autoencoders

* g(h) is decoder output
* h =f(x), encoder output
* (2 is sparsity penalty

* Note on regularizer

No straightforward “Typical” penalties can

Bayesian interpretation be viewed as a MAP
of regularizer approximation to

Bayesian infer E_’ —
with regularizjlljs ?7 L

priors over parameters

Regularized MAP then

o But autoencoder
maximizes:

regularization relies only
- on the data. It's more of

) — lOg p(f') .] a “preference over

functions” than a prior.

Denoising Autoencoders

* Instead of learning

L(z,9(f(Z)))
L(Z,9(f(Z)))

where X is a corrupted version of x

e | earn

* Forces the autoencoder to learn the structure of p g4(X)
* Form of “stochastic encoder / decoder”

Denoising Autoencoders

* No longer deterministic!
* Given a hidden code h, minimize —10g€ Pgecoder (X|1)

Pencoder (h | m) Pdecoder (m | h’)

Denoising Autoencoders

* Generalize encoding function to encoding
distribution

pencoder(];‘f) = Pmodel (E‘f)
* Same with the de_goding distribution . Pencoder (B |) Paccoder (Z | h)
pdecoder(f|h) = Pmodel (flh)

* Together, these comprise a stochastic
encoder and decoder

Denoising Autoencoders

* Define a corruption process, C
C(z|T)
* Autoencoder learns a reconstruction
distribution Preconstruct (x W)

1. Sample a training example x
2. Sample a corrupted version X from C
3. Use (x, X) as a training pair

Denoising Autoencoders

* Optimize
_EfNﬁdata (f)EjNC(ﬂf) logpdecoder(f‘h = f(fé))

Sample from training
set and compute
expectation

...with respect to learning the
uncorrupted data from the
encoded corrupted data

Expectation over
corrupted examples

* Easy choice of C

C(z]T) = N

- e~

‘ \\\

’ 4

\\\\\\\\.n
$ 4472 77 74 0 ¢

'us.\\\\\qA

o A o o
\.,.,‘/////a_-..

& VW

¢ T T e - ‘

‘“« v

A

A}

A

\-—>”

Q e SN
\.M\\\\\\ / \

l.m\\\\\\;...
NI I B B B I B '
I I B B B B

back to uncorrupted x
equiprobabzle C
approximately to
nearest x on manifold
field around a

* DFA learns a vector
manifold

* DAEs train to map X
* Vector from X points

* Gray circle

p
) -
ol
o)
O
O
C
()
@)
)
>
<
(@)
=
A
O
-
)
o

Embeddings

* Manifolds would seem to imply representation learning beyond a
simple low-dimensional code

* Autoencoders can learn
powerful relationships in this
regard

* Pose
* Position
* Affine transformations

Generative Models

* Go beyond learning x -> h, instead focused on learning p(x, h)

* Manifold learning with Autoencoders

* Variational Autoencoders (VAES)

* Deep Belief Networks (DBNs)

* Deep Restricted Boltzmann Machines (DBMs)
* Generative Adversarial Networks (GANS)

* Thursday!

Conclusions

* Autoencoders
* Multilayer perceptron (ANN) that is symmetric
e Output = input
* Goalistolearn a non-trivial identity function, or an undercomplete code h

 Sparse Autoencoders
* Include a sparsity constraint on the code

* Denoising Autoencoders
* Learn a mapping to de-corrupt data
* Include a corruption process C
 Equates to a traversal of the data manifold -> generative modeling primer

Course Details

* Projects!
* 3 presentations per day
* 9 teams—20 minutes hard speaking
time limit
* Presentations are the week after
Thanksgiving break

* Thursday is FULL
* Wednesday is ALMOST FULL

* First come, first serve!

Final Project Presentations

Final Project Presentations

Final Project Presentations

Final Project Deliverables Due

References

* Deep Learning Book, Chapter 14: "Autoencoders”
http://www.deeplearningbook.org/contents/autoencoders.htm|

* DL4J documentation, “"Denoising Autoencoders”
http://deeplearning.net/tutorial/dA.htm|

http://www.deeplearningbook.org/contents/autoencoders.html
http://deeplearning.net/tutorial/dA.html

