CSCl 4360/6360 Data Science

Backpropagation

Artificial Neural Networks

* Not a new concept!

* Roots as far back as 1940s
work in unsuperivsed

1 0
~ e A
ICa ||:| .g

* Took off in 1980s and
19905
" Vvaned In 20005
* "Biologically-inspired”
computing
* May or may not be true

* Shift from rule-based to
emergent learning

1986 paper by Rumelhart
et al—fastest
backpropagation
algorithm since original
1970s version

Multilayer networks

 Simplest case: classifier is a
multilayer network of logistic
units

Input nodes layer

Input x1
* Each unit takes some inputs I
and produces one output npute
using a logistic classifier

 Output of one unitcanbe PSS
the input of other units

Hidden nodes layer

LR as a Graph

* Define output o(x) =

ner = Z H‘i \l
=0

Sigmoid Unit

=2

O

o = G(ner) = L

l+e

-net

Multilayer networks

* Simplest case: classifier is a |
multilayer network of legistic Hidden niodes layer
. Input nodes layer
units that perform some

differentiable computation "
* Each unit takes some inputs [EE2E

and produces one output

- rtesisteclassifier nputx o

 Output of one unit can be
the input of other units

Learning a multilayer network

* Define a loss (simplest case: squared error)
* But over a network of “units” that do simple computations

Jx y (W) = Z(yi —§")?

1
* Minimize loss with gradient descent

* You can do this over complex networks if you can take the gradient of each
unit: every computation is differentiable

Sigmoid Unit

ANNSs in the gos

* In the gos: mostly 2-layer networks (or specialized “"deep” networks
that were hand-built)

* Worked well, but training was slow

PROC. OF THE IEEE, NOVEMBER 1998

C3: f. maps 16@10x10
g1:2fgif2t18re maps S4: f. maps 16@5x5
@ S2: f. maps

6@14x14

|
Full oonrlection | Gaussian connections

Convolutions Subsampling Convolutions ~ Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

ANNSs in the go’s

PROC. OF THE IEEE, NOVEMBER 1998

ik €3: 1. maps 16@10x10
feature maps S4:f. maps 16@5x5
Isszng 6@28x28 R

polynomial
kernel: 98.9 -
99.2% accurate

SVM poly 4
poly I S
RS-SVM poly 5
[dist) V-SVM poly 8 m
L

[16x18] LeNet-1
LeNet-4

LeNet-4 / Local
LeNet-4 / K-NN
LeNet-5

[dist] | eNat=5

[dist] Boosted LeNet-4

Custom CNN:

98.3-99.3%
accurate

Nomenclature

* Backpropagation: refers only to the method for computing the
gradient of a function

* Is NOT specific to multilayer neural networks (in principle, can compute
gradients for any function)

* Stochastic gradient descent: conducts learning using the derived
gradient

* Hence, you can run SGD on gradients you derive manually, or through
backprop

Notation

* “Borrowing” from

* William Cohen at Carnegie Mellon (author of SSL algorithm you
implemented in HW4)

* Michael Nielson of http://neuralnetworksanddeeplearning.com/

http://neuralnetworksanddeeplearning.com/

Notation

Notation

* Each digit is 28x28 = 784
dimensions / inputs

Notation

Notation

Computation is “feedforward”

forl=z, 2, ... L:

ad = ocwd=! +b).

Notation

* Set up a cost function, C

€= -3 lly(a@) - (@)

* Rewrite as an average

1 1
0=152.0 e Co=3lly—a”|f

Allows us to compute partial derivatives dC,/dw and dC,/db for
single training examples, then recover dC/dw and dC/db by
averaging over training examples.

Notation

BackProp: last layer

Matrix form:

& =V,C0odc').

(onents are léed
components are 43
dajl‘

The Hadamard Product: just
element-wise multiplication

Level [for [=3,...,L
Matrix: w!
Vectors:
bias b!
activation a
pre-sigmoid activ: Z!
target output y
“local error”é!

BackProp: last layer

Matrix form for square loss:

& =@ -y)0d)

Level [for [=3,...,L
Matrix: w!

Vectors:

* bias b

 activation d

* pre-sigmoid activ: Z!
* target output y

* “local error”é!

BackProp: error at level [in terms of
error at level [+1

51 - ((wl+1)T51+1) 0 O_I(Zl)
which we can use to compute

Level [for [=3,...,L
Matrix: w!
Vectors:

1 . 11
= = 1a!
oC _ _
I Qin Oout Oﬂm % S oid activ: Z!
tput y

e “local error”é!

BackProp: Summary

oL =V,C 06 a’(:L)

6 = ((w't1)T6+) @ o' (2!)

Level [for [=3,...,L
Matrix: w!
Vectors:
bias b!
activation a
pre-sigmoid activ: Z!
target output y
“local error”é!

Full Backpropagation

1. Input x: Set the corresponding activation a' for the input

layer.

2. Feedforward: For each [= 2,3, ..., L compute 7/ = wla"~! + &/
and ' = o(2).

Use SGD to update the
weights according to
the gradients

3. Output error §-: Compute the vector §* = V,C © ¢'(zb).

4. Backpropagate the error: Foreach/=L-1,L-2,...,2

compute & = (WHHT8+1) © o' (d).

5. Output: The gradient of the cost function is given by

_ J-lg ac _ sl
- =a; & and 0b]’._6j'

Example

* Simple equation

fle,y,2) = (z +y)z
* Some example inputs

°* X=-2

*Y=5

e 7=y

[slightly less simple] Example

1

« 2D Logistic Regression, P(Y =1]|X) = 1+ exp(—(wo + X5, wi Xi))

with a bias term

Weight updates for multilayer ANN

* For nodes k in output layer L:
* For nodes jin hidden layer h:

* What happens as the layers get further and further from the output
layer?

Gradients are unstable -

Derivative of sigmoid function

* If weights are usually < 1, and
we are multiplying by many,
many such numbers...

Understanding the difficulty of training deep feedforward neural networks

Xavier Glorot Yoshua Bengio
DIRO, Université de Montréal, Montréal, Québec, Canada

-0.1 -0.05 0 0.05 0.1
Backpropagated gradients

Histogram of gradients in a 5-layer network for an
artificial image recognition task

Understanding the difficulty of training deep feedforward neural networks

Sigmoid depth 5
Sigmoid depth 4
Tanh
Softsign
Softsign N
Tanh N

— Pre-training

w
=

test error %

FN
=)

1.0 15
exemples seen

It's easy for sigmoid units to saturate

Learning rate approaches zero,
and neuron gets “stuck”

Derivative of sigmoid function

It's easy for sigmoid units to saturate

It's easy for sigmoid units to saturate

* If there are 5oo non-zero inputs initialized with a Gaussian ~N(o,1)

then the SD is \/ﬁ ~ 99 4

It's easy for sigmoid units to saturate

[
=
<
>
=
S
gl
o]
=
=
(9]
<

46 66 8‘0 16

Epochs of 20k mini-batch updates

* Saturation visualization

from Glorot & Bengio 2010 - Bottom layer still
stuck for first 100

- using a smarter epochs
initialization scheme

What's Different About Modern ANNSs?

Some key differences

* Use of softmax and entropic loss instead of quadratic loss

* Use of alternate non-linearities
* reLU and hyperbolic tangent

* Better understanding of weight initialization

* Data augmentation
* Especially forimage data

* Ability to explore architectures rapidly

Cross-entropy loss

Cross-entropy loss

Figure 5: Cross entropy (black, surface on top) and
quadratic (red, bottom surface) cost as a function of two
weights (one at each layer) of a network with two layers,
W1 respectively on the first layer and W5 on the second,
output layer.

Softmax output layer

Cross-entropy loss after a softmax
layer gives a very simple,
numerically stable gradient: (y - a)

Z <

al

A Dk e*x

Some key differences

* Use of softmax and entropic loss instead of quadratic loss.

 Often learning is faster and more stable as well as getting better
accuracies in the limit

* Use of alternate non-linearities
* Better understanding of weight initialization

* Data augmentation
* Especially forimage data

* Ability to explore architectures rapidly

Some key differences

* Use of softmax and entropic loss instead of quadratic loss.

* Often learning is faster and more stable as well as getting better
accuracies in the limit

* Use of alternate non-linearities
* reLU and hyperbolic tangent

* Better understanding of weight initialization

* Data augmentation
* Especially forimage data

* Ability to explore architectures rapidly

Alternative non-linearities

* Changes so far
* Changed the loss from square error to cross-entropy (no effect at test
time)
* Proposed adding another output layer (softmax)
* A new change: modifying the nonlinearity
* The logistic is not widely used in modern ANNs

Alternative non-linearities

* A new change: modifying the nonlinearity
* The logistic is not widely used in modern ANNs

* Alternative #1: tanh . tanh function
* Like logistic, but shifted to range [-1, +1]

Understanding the difficulty of training deep feedforward neural networks

Sigmoid depth 5
Sigmoid depth 4
Tanh
Softsign
Softsign N
Tanh N

— Pre-training

w
=

test error %

FN
=)

1.0 15
exemples seen

Alternative non-linearities

* A new change: modifying the nonlinearity
* The logistic is not widely used in modern ANNSs

e Alternative #1: tanh
- . — log(exp(x) + 1)
* Like logistic, but shifted to range [-1, +1] i g ng%px);

' — /(1 + exp(-x)
* Alternative #2: ReLU expl-x
* Linear with cut-off at zero

e Alternative #2.5: “Soft” ReLU
* Doesn’t saturate (at one end)
* Sparsifies outputs
* Helps with vanishing gradient

Some key differences

* Use of softmax and entropic loss instead of quadratic loss.

* Often learning is faster and more stable as well as getting better
accuracies in the limit

* Use of alternate non-linearities
* reLU and hyperbolic tangent

* Better understanding of weight initialization

* Data augmentation
* Especially forimage data

* Ability to explore architectures rapidly

It's easy for sigmoid units to saturate

* If there are 5oo non-zero inputs initialized with a Gaussian ~N(o,1)

then the SD is \/ﬁ ~ 99 4

« Common heuristics for initializing weights

N (0, =) U e)
v # of inputs Vv # of inputs /# of inputs

Initializing to avoid saturation

* In Glorot and Bengio (2010) they suggest weights if level j (with n;
inputs) from

V6 V6]

VT + 11 , (TR S TS
TYPE Shapeset MNIST CIFAR-10 ImageNet

WNU[—

Softsign 16.27 1.64 55.78 69.14
» Softsign N 16.06 1.72 53.8 68.13
Tanh ZE1S 1.76 55.9 70.58
» Tanh N 15.60 1.64 52.92 68.57

Summary

* Backpropagation makes training deep neural networks possible

* Known since 1970s, understood since 1980s, used since 1990s, tractable
since 2010S

* Feed-forward versus backward propagation
* Feed-forward evaluates the network’s current configuration, J()
* Backpropagation assigns error in J() to individual weights

* Each layer considered a function of its inputs

* Differentiable activation functions strung together
* Chain rule of calculus

* Modern deep architectures made possible due to logistical tweaks
* Vanishing / Exploding gradient and new activation functions

References

* “A gentle introduction to backpropagation”,
http://numericinsight.com/uploads/A Gentle Introduction to Bac
kpropagation.pdf

* "Deep Feed-Forward Networks”, Chapter 6, Deep Learning Book,
http://www.deeplearningbook.org/contents/mlp.html

* “Backpropagation, Intuitions”, C5231n "CNNSs for Visual
Recognition”, https://cs231n.github.io/optimization-2/

* "How the Backpropagation Algorithm works”, Chapter 2, Neural
Networks and Deep Learning,
http://neuralnetworksanddeeplearning.com/

http://numericinsight.com/uploads/A_Gentle_Introduction_to_Backpropagation.pdf
http://www.deeplearningbook.org/contents/mlp.html
https://cs231n.github.io/optimization-2/
http://neuralnetworksanddeeplearning.com/

