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scipy.signal.convolve

| |
‘ O n VO | U t I O n scipy.signal.convolve(in7, in2, mode="full, method='auto)

Convolve two N-dimensional arrays.
Convolve /n7 and in2, with the output size determined by the mode argument.

Parameters: in1 :array_like

* Basically a fancy way of saying Firs input.

in2 :array_like
\\ - i § n” Second input. Should have the same number of dimensions as in7.
m U |t| p | I Cat I O n mode : str {'full, ‘valid, ‘same?’}, optional
A string indicating the size of the output:

* Originally devised to make
non-differentiable signals Original pulse

differentiable

* KDE is related to convolution

* For an input function f and
convolutional filter g:

S ®g




Convolution

) Can be VleWEd as an . i 1 :]f(f;aunderf(tjga-t):
integral transform S - r

* One of the signalsis
shifted
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Convolution in 2D

* 2D convolutions are critical
In computer vision

* Basic idea is still the same
* Choose a kernel
* Run kernel overimage

* Build a representation of the
convolved image (likely an
intermediate representation)

* Lots of applications Convolved
Feature




Convolution in 2D

* Specific kernels can highlight different image features

Input image

Convolution
Kemel
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Feature map

* This kernel is an edge detector (others can be smoothers,

sharpeners, etc)




Convolution in 2D

* Works basically the same
as 1D

Source pixel

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

* Filter / kernel computes a
dot product with
underlying pixels

Convolution filter

* Generates an output (Sobe )

Destination pixel
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* Shift kernel and repeat

kT TR




Convolution in 2D

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
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 Stride dictates how far _ — == ——

the kernel moves after ats s
each convolution
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* Padding is used to help i 0o

&)

with edge cases T D

Bias b0A(1x1x1) Bias bl (1x1x1)
bO:[1; 3.,.0] bl [z,::,.00
0

* Pictured: stride of 2,
padding of 1




Pooling

* Repeated convolutions can
generate large intermediate
feature maps

* "Pooling” is used to reduce
dimensionality of feature maps
while maintaining most
informative features

* Mean-pooling, max-pooling

* Functions as a regularizer (or an
infinitely-strong prior)

Large response
in pooling unit
Large

response

Large response
in pooling unit
Large

response
in detector
unit 3




Filters

* Different filter topologies
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* Captures long-range pixel dependencies

* Very computationally expensive to implement



Convolution

* Key point: parameter sharing

- Images dare sparse

* Pixel dependencies
don’t span
arbitrarily large
distances

* Important effects
are local

* Instead of a fully-connected network...
* ...we have one that is more sparsely-connected




Parameter Sharing

FULLY CONNECTED NEURAL NET LOCALLY CONNECTED NEURAL NET

IM hidden units
‘ 10712 parameter:

Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters

- Spatial correlation is local
- Better to put resources elsewhere!




CNNs in Practice

 Stacked conv (180w + 5b)
e Convolutions |
* Pools
e Activations

non-linear
TGXPOOl conv (450w + 10b)

* Fully-
connected
classification

layer
Y maxpool
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CNNs in Practice

* Pattern can be repeated several times

* Still “"deep”, but convolutions are the most important part




CNNs in Practice

* Filters are the things that “search” for something in particular in an

Image

* To search for many different things, have many different filters

L

Convolution Layer

activation maps

4




CNNs in Practice

* Hyperparameters relevant to CNNs:

* Kernel size
* Usually small

* Stride
* Usually 1 (larger for pooling layers)

* Zero padding depth
* Enough to permit convolutional output size to be the same as input size

* Number of convolutional filters
* Number of “patterns” for the network to search for




CNNs in Practice

* 1x1 convolutions are a special case

* Convolve the feature maps, rather
than the pixel maps

* Function as a dimensionality
reduction step (like pooling)
* Can also be used in pooling




CNN Applications: Object Localization

—_—
* Two discrete steps:

* Localizing a
bounding box
(regression)

* Identifying the object
(classification)

The best result now is Faster RCNN with a resnet 101 layer.

>lassification head”

R-CNN Fast R-CNN Faster R-CNN

Test time per 50 seconds 2 seconds 0.2 seconds

* Generate “region image

pI’Op oS aI % (with proposals)
(Speedup) 1x 25X

* Classification

mAP (VOC 2007) 66.0 66.9
accuracy
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CNN Applications: Single-shot Detection

* Combines region-proposal
(regression) and object
detection (classification) into a
single step

* Use deep-level feature maps to
predict class scores and
bounding boxes

* Families of Single-shot detectors:

* YOLO (single activation map for %

both class and region) _g............
* SSD (different activations) TR

* R-FCN (like Faster R-CNN)




CNN Applications: Object Segmentation

* Create a map of the detected
object areas

* “Fully-convolutional”
networks

* Substitute fully-connected layer

* Activations show object

* Resolution is lost in
upsampling step
 Skip-connections to bring in
some of the “lost” resolution

* EXTREME Segmentation
* Replace upsampling with a
complete deconvolution stack

More semantic

More detailed ]




CNN Applications: Object Segmentation

* "DeconvNet”: Super-expensive to train

224x224

Convanlutinn netwarlk Decanunlutinn netwark
Input image Ground-truth FCN DeconvNet
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Conclusions

* CNNs are mostly “convolutions inside a deep network”
* Main operator (i.e. most important) is the convolution
* Exploits image sparsity: important features are local

* A couple newlish] tricks include
 Automatically learning the filters as part of the training process
* Using pooling
* 1x1 convolutions

* Applications include
* Object detection (is there an object)
* Object localization and segmentation (where is the object)
* Object classification (what is the object)
 Zero- and single-shot detectors
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