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Parametric Statistics

* Assume some functional form (Gaussian, Bernoulli, Multinomial,
logistic, linear) for
* P(X]Y)and P(Y) as in Naive Bayes
* P(Y|X) as in Logistic Regression

* Estimate parameters (L, o, 0, w, B) using MLE/MAP
* Plug-n-chug

* Advantages: need relatively few data points to learn parameters
* Drawbacks: Strong assumptions rarely satisfied in practice




Embeddings

* Again!
* MNIST, projected into
2D embedding space

* What distribution do
these follow?

* Highly nonlinear




Nonparametric Statistics

* Typically very few, if any, distributional assumptions
* Usually requires more data
* Let number of parameters scale with the data

* Today
* Kernel density estimation
* K-nearest neighbors classification
* Kernel regression
= SUppOI’t Vector Machines (SVMS) > not exactly nonparametric, but kernels are involved!




Density Estimation

* You've done this before—
histograms!

* Partition feature space into
distinct bins with specified
widths and count number of

observations n; in each bin
(@)= —=i
L) = T in;
b . nAz' €Bin;
* Same width is often used for
all bins

* Bin width acts as smoothing
parameter




Effect of A

e # of bins =1/A
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Assuming density is roughly constant in each bin
(roughly true, if A is small)




Bias-Variance Trade-off

p(x) approximately
constant per bin

* Choice of # of bins A
e if Ais small K [p<$)] ~ p(w)
* if Aislarge "

More data per bin
stabilizes estimate

* Bias: how close is mean of estimate to the truth
* Variance: how much does estimate vary around the mean

Small A, large #bins <=)> “Small bias, Large variance”

Large A, small #bins <(=> “Large bias, Small variance”
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A decreases ——
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Bias + Variance

MSE

500 1000
Number of Bins




Kernel Density Estimation

* Histograms are "blocky” estimates
n
n

* Kernel density estimate, aka “Parzen / moving
window” method
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Kernel Density Estimation

* More generally:

n Xj—x
1 Zj:lK( A )

n

* Kis the kernel function

* Much like kernels in Kernel PCA or SVMs: model a relationship between
two data points

* Embodies any number of possible kernel functions




Kernel Density Estimation

* Places small "bumps” at each data point, determined by K
* Estimator itself consists of a [normalized] “sum of bumps”

Img src: Wikipedia

* Where points are denser, density estimate will be higher



Kerne | S Gaussian kernel :

* Any function that satisfies

(z) >0

/K —1

* SciPy has aton Infinite support: need

all points to compute
estimate. But quite
popular.

* See “"signal.get_window”




Kernels

* Deep theory associated
with kernels and kernel
functions

* Touched on in Kernel PCA
lecture

* Foundational to Support
Vector Machines and Deep
Neural Networks

5.8 Regularization and Reproducing Kernel
Hilbert Spaces M

In this section we cast splines into the larger context of regularization meth-
ods and reproducing kernel Hilbert spaces. This section is quite technical
and can be skipped by the disinterested or intimidated reader.

Elements of Statistical Learning, Chpt. 5




Choice o kernel bndwidth

Too small

The Bart-Simpson
Density
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True Density Undersmoothed

Just right
Too large
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Histograms versus KDE
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KNN Density Estimation

* Recall
* Histograms
* KDE

* Fix A, estimate number of points within A of x (n; or n,) from the
data

* Fix n, = k, estimate A from data (volume of ball around x with k data
points)

k
* KNN Density Estimation —
/ nAk,a:




KNN Density Estimation

* kacts as a smoother

* Not very popular for density
estimation
» Computationally expensive
* Estimates are poor

* But related version for
classification is very popular




KNN Classification
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KNN Classification

Test document

@ Sports

O Science

® Arts




KNN Classification

Test document

ok=4

* What should

we predict?

* Average?
Majority? Why? @ Sports

O Science

® Arts




KNN Classification
f*(x) = arg max P(y|x)

* Optimal classifier J
arg max P(z|y)P(y)
Yy

« KNN classifier JkNN (:U) — arg mg’xﬁkNN (x|y)P(y)
arg max k,

# of training points in Y
class y

o ~ n
# of training points in B - Y
class y that lie within E :ky - k P(y) .
Y

A, ball n
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K even not used
in practice
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What is the best k?

* Bias-variance trade-off

* Large k = predicted label is more stable

* Small k = predicted label is more accurate

* Similar to density estimation




1-NN Decision Boundary

Voronoi
Diagram




KNN Decision Boundaries

* Guarantee: Forn — oo, error rate of 1-NN is never more than 2x
optimal error rate




Temperature Sensing

at location x?
* What is the temperature in the room?

> =1 Yil|x,—z||<h

T(z) =
Y1 1) x,—a||<h

“Local” Average




Kernel Regression

* Or "“local” regression

* Nadaraya-Watson Kernel Estimator

fn(X) :Zwiy&- .where w;(X)
=

* Weight each training point on distance to test point
* Boxcar kernel yields local average




Choice of kernel bandwidth

Too small

1
200

multipole

1
200

multipole

1
200

multipole

h=200 : ... Too large

L
200

multipole

Choice of kernel is not
terribly important!




Kernel Regression as WLS

* Weighted Least Squares (WLS) * Kernel regression corresponds
has the form to locally constant estimator
obtained from [locally]

n
mfin Z W; (f(Xz) _ul )/;)2 weighted least squares
1=1

+Set f(X;) = [

* Compare to Nadaraya-Watson where f8 is constant

form K (X—Xq;)
w;i(X) = n hx_x.
%) > e Bl




Kernel Regression as WLS

min w; (8 —Y;)?
i ; (B=Yi)

A constant
value

Individual weights have
tosumto1




Support Vector Machines

* Linear classifiers—which is
better?

* Pick the one with the
largest margin




Support Vector Machines

“confidence” = (w.xj + b) Yj




Support Vector Machines

* Maximize the margin

* Distance of closest example
| data point from the
decision boundary /
hyperplane:

margin =y = 2a/|lw||




Support Vector Machines

* Rewrite the equation (drop a
in favor of 1)

min W.w
w,b

s.t. (w.x+b) y; 21 Vj
* Solve via quadratic
programming

* Data points along margin =
support vectors




SVMs

* What if the data aren't linearly
separable?

e Allow for “errors”
mig w.w + C #mistakes
w,

s.t. (wx+b) y; 21 Vj

* Maximize margin AND
minimize mistakes
* C: tradeoff parameter




SVMs

* What if the data still aren't
linearly separable?

* “Soft” margin
* (penalize misclassified data by
how far it is from the margin)

* Recover “hard” margin:




SVMs are great, but...

* Where is this going?
* First, SVMs were the “big thing” right before deep learning

* Neural network research had been dead for 10+ years
* SVMs were showing immense promise, especially with high-dim data

* Second, SVMs share a lot of theory with deep learning




12.2.1 Computing the Support Vector Classifier

The problem (12.7) is quadratic with linear inequality constraints, hence it
is a convex optimization problem. We describe a quadratic programming
solution using Lagrange multipliers. Computationally it is convenient to
re-express (12.7) in the equivalent form

* Start with core parameterization of SVM

N
1 2
min — +C i
min | 8] ;5

subject to & >0, yi(z{ B+ Bo) > 1 —& Vi,
* Write “primal” objective (Lagrange) function

|II

=—||B||2-I-CZ& Zaz[yz 27 B+ Bo) — (1- &) Zuzﬁz,

=1

* Differentiate with respectto 8, f,, and {; and setto o




* Substitute back into primal equation, and get the Lagrangian Dual

LD — Zaz e Z Z ;O Y Y

* Notice anything?
* Kernel!

N 1 NN
Lp = Zai —3 Z Z a0y (h(zs), h(zi)).
i=14'=1




Training Error: 0.270
Test Error: 0.288
Bayes Error:  0.210
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Training Error: 0.26 -7° i
Test Error: 030 i
Bayes Error:  0.21

Training Error: 0.180
Test Error: 0.245
Bayes Error:  0.210

C =0.01

Training Error: 0.160
Test Error: 0.218
Bayes Error:  0.210
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Summary

* Nonparametric places mild assumptions on data; good models for
complex data
* Usually requires storing & computing with full dataset

* Parametric models rely on very strong, simplistic assumptions
* Once fitted, they are much more efficient with storage and computation

» Effects of bin width & kernel bandwidth

* Bias-variance trade-off

* Kernel regression
» Comparison to weighted least squares

* Support Vector Machines
* Powerful “shallow” models
* Dual formulation of objective allows for kernel functions




Questions?
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Other slides




Case Study: Newsgroups Classification

* 20 Newsgroups comp.graphics
comp.os.ms-windows misc
comp svs.ibm pc hardware

* 18,774 documents comp.sys.mac hardware
comp windows.x

rec.autos scicrvpt
rec_motorcvcles scielectronics

rec.sport baseball scimed

rec.sport hockev scispace

* 61,118 words

e Class label ription
Class label desc ptions talk politics misc | talk religion misc

misc forsale talk politics guns alt atheism
talk politics mideast soc religion christian




Case Study: Newsgroups Classification

* Training/Testing
* 50%-50% randomly split
* 10 runs
* Report average results

e Evaluation Criteria

Z I( predict, — true label.)

iclest set

Accuracy =
“ i of test samples




Case Study: Newsgroups Classification

— alt.atheism

] ; VS.
* Results in blnary e comp.graphics

class comparisons comp.windows.x

VvSs.
rec.motorcycles
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