CSCI 4360/6360 Data Science II

Linear Dynamical Systems

Last time...

- Motion analysis via optical flow
- Parametric vs energy-based formulations
- Importance of assumptions
- Modern formulations
 - Robustness to outliers (large optical flow)
 - Relatedness to markov random fields
 - Coarse-to-fine image pyramids

Today

• A specific type of motion: **dynamic textures**

Dynamic textures

- "Dynamic textured sequences are scenes with complex motion patterns due to interactions between multiple moving components."
- Examples
 - Blowing leaves
 - Flickering flames
 - Water rippling
- Multiple moving components: problematic for optical flow
- How to analyze dynamic textures?

Dynamical Models

• Goal: an effective procedure for tracking changes over sequences of images, while maintaining a certain coherence of motions

Dynamical Models

- Hand tracking
- Top row: slow movements
- Bottom row: fast movements
- Fixed curves or priors cannot exploit coherence of motion

Linear Dynamical Models

• Two main components (using notation from Hyndman 2006):

Appearance Model

$$y_t = Cx_t + u_t$$

State Model

$$x_t = Ax_{t-1} + Wv_t$$

Autoregressive Models

• This is the definition of a 1st-order autoregressive (AR) process!

$$x_t = Ax_{t-1} + Wv_t$$

- Each observation (x_t) is a function of previous observations, plus some noise
- Markov model!

Autoregressive Models

- AR models can have higher orders than 1
- Each observation is dependent on the previous *d* observations

$$x_t = A_1 x_{t-1} + A_2 x_{t-2} + \dots + A_d x_{t-d} + W v_t$$

Appearance Model

- y_t: image of height h and width w at time t, usually flattened into 1 x hw vector
- x_t: state space vector at time t, 1 x q (where q <<< hw)
- u_t : white Gaussian noise
- C: output matrix, maps between spaces, hw x q

Output matrix

 $y_t = Cx_t + u_t$

Image in a sequence

Lowdimensional "state"

Noise inherent to the system

Appearance Model

$$y_t = Cx_t + u_t$$

Each of these is 1 column of *C*.

There are q of them (first 4 shown here).

PC₁

Appearance Model

- How do we learn the appearance model?
- Choose state-space dimension size q
- Noise term is i.i.d Gaussian

the first q columns of

$$Y = \left[\vec{y}_1, \vec{y}_2, ..., \vec{y}_f
ight]^T$$

$$Y = U\Sigma V^T$$

$$C = \hat{U}$$

$$X = \hat{\Sigma} \hat{V}^T$$

V-hat is a matrix of the first q columns of V, and sigma-hat is a diagonal matrix of the first q singular values

$$y_t = Cx_t + u_t$$

State Model

- x_t and x_{t-1} : state space vectors at times t and t-1, each 1 x q vector
- A: transition matrix, q x q matrix
- W: driving noise, q x q matrix
- v_t : white Gaussian noise

State transition matrix

$$x_t = Ax_{t-1} + Wv_t$$

Lowdimensional state at time *t* Lowdimensional state at *t* - 1

Driving noise

State Model

$$x_t = Ax_{t-1} + Wv_t$$

- Three textures
- q = 2

State Model

• How do we learn the state model?

$$x_t = Ax_{t-1} + Wv_t$$

Stay tuned for Homework 2...

LDS as Generative Models

• Once we've learned the parameters, we can generate new instances

Problems with LDS

- PCA = Linear + Gaussian
- What if the *state space* isn't linear, or data aren't Gaussian?
- Nonlinear appearance models
 - Wavelets
 - IsoMap
 - LLE
 - Kernel PCA
 - Laplacian Eigenmaps
- These introduce their own problems!

Problems with LDS

- Comparing LDS models
- Given a sequence Y:
- New sequence Y':
- How do we compare these systems?
- Despite linear formulation, heta are NOT Euclidean
- Valid distance metrics include spectral methods and distribution comparators

$$\begin{array}{l} \theta = (C,A,Q) \\ \theta' = (C',A',Q') \end{array} \label{eq:theta_alpha_problem} \begin{tabular}{l} \textbf{all Cl} \\ \textbf{and } \textbf{all Cl} \\ \textbf{all Q2:} \end{tabular}$$

Comparing LDS

- Select multiple, non-overlapping patches from each video
- Build LDS for each patch

Conclusion

- Dynamic textures are motion with statistical regularity
- Regularity can be exploited through parametric representation
- Linear dynamical systems (LDS)
 - Autoregressive models (AR)
 - Markov assumption
 - Representation model + State model
 - Generative models

References

- Hyndman et αl, "Higher-order Autoregressive Models for Dynamic Textures", BMVC 2007 http://www.cs.toronto.edu/~fleet/research/Papers/DynamicTextures.pdf
- Shumway and Stoffer, Time Series Analysis and Its Applications (3rd ed.), Chapters 3 and 6, http://www.db.ucsd.edu/static/TimeSeries.pdf
- Blake and Isard, *Active Contours*, Chapter 9-11, http://ww.vavlab.ee.boun.edu.tr/courses/574/material/books/blake_Active_Contours.pdf
- Doretto *et αl*, "Dynamic Textures", IJCV 2003 https://escholarship.org/uc/item/2m5of2fb
- Woolfe *et αl*, "Shift Invariant Dynamic Texture Recognition", ECCV 2006 https://link.springer.com/chapter/10.1007%2F11744047_42?Ll=true
- Ravichandran et al, "View-invariant dynamic texture recognition using a bag of dynamical systems", CVPR 2009 http://ieeexplore.ieee.org/abstract/document/5206847/

Homework 1 Questions?