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REINFORCEMENT LEARNING
IN THEORY, IN PRACTICE




OUTLINE @

»RL

»Decision Processes
»Q-Learning

»PAC Learning

» Application: RL in Sales Domain
»AWS
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REINFORCEMENT LEARNING
IN AGENT-BASED REASONERS




RL BACKGROUND
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DECISION PROCESSES

Decision problem: how to optimize behavior to maximize reward!?

»Choose the action that has the best expected outcome

Action

R(a)

Reward
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DECISION PROCESSES

Rewards may be based on more than just the action,

but also the physical state

Preferences

Action

R(s,a)

Reward
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DECISION PROCESSES

Sometimes the physical state is unknown, but the agent
gets a clue as to where they are
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DECISION PROCESSES

In the multiagent setting, additional agents affect the
reward for each agent and the state
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DECISION PROCESSES

= The Markov Decision Process (MDP)
<§,A/T,R>

S: Set of physical states

= A: Set of actions

= T:SxAxS - [0,]]: State transition function
= R:S xA - R:Reward function
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DECISION PROCESSES

® The Partially Observable MDP (POMDP)
<SATQ,0OR>

= ():Set of observations

= O:S xA x Q2[0,1]: Likelihood of an observation from a state

= States are unknown!

bi(s) = BO(ot,s,at™1) z i~ (s"NT(s,a,s")

SIES

R(b,a) = Z b(s)R(s, a)

SES
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DECISION PROCESSES

= The Multiagent POMDP (MPOMDP)
<S,AT,Q0,OR>

= Cooperative: Agents get identical, often joint, rewards
= A:]Joint action of all agents

= O,T:Maps joint actions and state to new state

= Functionally, the MPOMDP may be solved as POMDP, where the action space is
increased by agents exponentially
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DECISION PROCESSES

= The Interactive POMDP (IPOMDP)
<IS,A, T,(0,O,R>

= Non-cooperative: Individual, potentially competitive rewards
= R is an individual reward, still based on the joint action
= |IS: Interactive state (state and model of opponent)

= Opponent might act without considering others (subintentional) or might also be
modeling their opponents (intentional)

= Enhanced Uncertainty

= Model of opponent includes
location and behavior

= Complicates R
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DECISION PROCESSES

Policies in MDPs map states to actions

sl s2 s3

al a3 al

POMDPs may map states or single observations to actions

[0} ol o2
a2 al a3

A policy can also be a sequence of observations to actions

horizon 3 policy tree
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Q-LEARNING

= Temporal difference learning models
= TD(0)

Vis;a) = (1—a)V(s) + a(r(s) +y - V(S’))

" a:Learning rate
= y: Discount factor

= On-policy: Calculates value based on following a given strategy
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Q-LEARNING

» Off-policy Q-learning considers actions

» Future rewards consider the best action

OGs,a;a)=(1—-—a)0(s,a) + a (r(s, a)+y- max Q(s’, a’))

» On-policy State Action Reward State Action follows a policy

Q(s,a;ma) = (1—-a)Q(s,a) + a(r(s,a) +y - Q(s', m(s)))
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Q-LEARNING: MONTE CARLO EXPLORING STARTS

= Monte Carlo Exploring Starts for POMDPs (MCES-P)
Theodore Perkins (AAAI 2002)

Sample random

[ H led
Current neighbor strategy Is the neighbor ave we sample

i ighb h
Strategy better? No every n(z;gmec;; enoug

Retain
strategy

Have we sampled the
current and neighbor
strategies enough!?

Terminate
Strategy is an optima!

Set neighbor
as current strategy

QUINNRESEARCHGROUP



Q-LEARNING: MONTE CARLO EXPLORING STARTS

Random observation sequence replaced with a random action
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Q-LEARNING: MONTE CARLO EXPLORING STARTS

0,:0a3  rd a,
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Q-LEARNING: MONTE CARLO EXPLORING STARTS
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Q-LEARNING: MONTE CARLO EXPLORING STARTS
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Q-LEARNING: MONTE CARLO EXPLORING STARTS

Pick random
observation
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Q-LEARNING: MONTE CARLO EXPLORING STARTS

Pick random
observation

Pick rando
action

Simulate

o

Proportion of reward in 7 after seeing 0

Qn<—(5,a) o (1 - a(m, CB,a))Qm—(B,a) + a(m: CB,a) ) Rpost—B(T)
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Q-LEARNING: MONTE CARLO EXPLORING STARTS

Pick random
observation

Pick rando
action

Simulate
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Q-LEARNING: MONTE CARLO EXPLORING STARTS

Sample policies
k times ‘ ' ‘ '

SRN
\/

\Z

2,94
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Q-LEARNING: MONTE CARLO EXPLORING STARTS

a® 0 .00._

Sample policies

k times 00> Qp +é \/

2.4
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Q-LEARNING: MONTE CARLO EXPLORING STARTS

Sample policie a® 0 .00._

k times 00> 0y +e x

\Z

\

2,94

QUINNRESEARCHGROUP



Q-LEARNING: MONTE CARLO EXPLORING STARTS
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PAC LEARNING

= Picking a sample count

Low Samples High Samples
Inaccurate Q-values Accurate Q-values
Cheap to run Expensive to run
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PAC LEARNING

= Derive k!
= Probably Approximately Correct (PAC) Learning

® The probability of the sample average deviating from the true mean by
more than € > 0 can be bound by probabilistic error 6 € (0,1)

_ €2
Pr(lX —u|l>e)<2- exp{—Zk (7\) } =0
/ \

Sample count Value bound
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PAC LEARNING

= € and § determine sample counts

o =[2(A2) w2

= m: current transformations
= N: neighbor policies

60
m2m?

l6m=

A(m',m) £ mTaX(QTc_Qn’) - mrin(Qn_Qn’) < 2T(Rpax — Rnin)

A = A(r,
(Tl‘) r’ Enerl{lqellz)lgor(n) (T[ T[)
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PAC LEARNING

" We can transform early by modifying €

’
N |1 20k = DNY
A(n,n)\/2p1n< 5 ) ifp=qg<k,

e(m,p,q) = A
ifp=q=kp

S N m

L otherwise

= Terminate when k,,, samples of each neighbor is taken or for all
neighbor policies:

Q30 < Q3G +€— €M, C34,C515))
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PAC LEARNING

= Then, with probability 1 — 6, MCESP+PAC

|. Transforms to 7 that are guaranteed better than the current policy

2. Terminates with a 7 that is an e-local optima

. No neighbor is better than the last policy by more than €

https://arxiv.org/pdf/1901.01325.pdf
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REINFORCEMENT LEARNING
IN THE SALES DOMAIN




DATA SCIENCE PROCESS

Ask interesting questions, get interesting answers.

Corporate Mission

Marketable

a

g Approach
= Identification
=

Find the question you want to answer

A

\ 4

Solution Design

What answers to this question might our data

hold? How can we get at it? Consider
methods, perform ETL.

I

insights

A 4

Y

Experimentation

Test solutions and statistically analyze the
output. Is the question answered?

Architect Solution

Integrate within the context of the existing
tech stack

Productize New feature

UX/UI, hook into APIs, etc.
(other Engineering stuff...)

\4

QUINNRESEARCHGROUP




THE SALES DOMAIN

General Sales Funnel: 7 Steps

Generalized sales funnel that can be applied to any small business.

Your first email, call, meeting
or other contact with the

lead.
1. Initial Contact

When you’ve determined a lead is
serious and capable of making the
purchase.

Begin collecting facts about your client
to develop a value proposition.

When you’ve scheduled a full sales
presentation, be it a demo or a written

4. Presentation bropatal,

When you address customer concerns about
the product.

- When you negotiate price and other details.

6. Negotiation

When the purchase is made or contract is signed.

7. Closing

— FitSmallBusiness

Get Your Business Into Shape
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Reﬁresentatives
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Calendar
Owler/Crystal Knows
Dialer

Cadences

Meetings

Opportunities



DERIVED CADENCES - THE JOURNEY @

Interesting Question:

What's the optimal number of touches!?

Win Probability by Touch Count

Promising Perspectife: Day 11
rce Opportunity Closefstagus given Fe @C our

% s w N <> <>

1 | |

Touch Count
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DERIVED CADENCES - THE PROCESS

Bayesian
Information

Retrieval
Derived Cadence

Trees

Cadence

Similarity

Engagement Measure
Scoring

User-Defined

Cadences
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DERIVED CADENCES - THE PROCESS

Optimizing Time Value

Day | Day 2 Day 4 Day 5 Day 7 Day 11

B

400 character reply 12 minute chat 750 character reply
Meeting scheduled
1.66 3.14 3.125

length(t) if t = Email

550 = { oy
ation(t)  if ¢ = Call
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DERIVED CADENCES - THE PROCESS

Aggregating Behavioral Data
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DERIVED CADENCES - THE PROCESS

Aggregating Behavioral Data

®©

Moving Average ES, — ES, |+ ES, —ES, 1
n
ES, — M, _
Mn — Mn—l + n - n—1
Moving Variance
_ ESn - Mn—l
=Vt s T,
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DERIVED CADENCES - ACTIONABLE INSIGHTS

Y
S

Cadence
Coach

IIIIIII
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89/100

Double Taps

Pacing

Channel
Changes

88/100
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AWS
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COMMON STACK

Catalog Stage

v

amazon
REDSHIFT

Manipulate

Expose,
Visualize

+14
Eaey

+ableau

AWS Lambda

Amazon Athena
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