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Modeling Sequences

* Input: * Output:

Y = [gla ?727 Seoy gN]

T and N not necessarily equal

Dimensions of X and Y not
necessarily equal




Something we've seen before




Linear Dynamical Models

* Two main components (using notation from Hyndman 2006):
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Autoregressive Models

* This is the definition of a 1°t-order autoregressive (AR) process!

ry = Axi_1 + Wy

* Each observation (x,) is a function of previous observations, plus
some noise

 Markov model!




Autoregressive Models

* AR models can have higher orders than 1
* Each observation is dependent on the previous d observations

T = A1 1+ Aoxy_o+ ... + Agxe_g + Wy




Autoregressive Models

* Concrete, a priori definition of what is important
* nth-order Markov process
* n+1terms and larger are explicitly ignored

* No concept of attention

* All nterms receive equal “attention” (computationally, if not also
statistically)
* Are you devoting equal time reading every word on this slide?

* Cannot handle variable-length inputs, nor variable-length outputs

* Contrast with CNNs: all input images have to be the same size (usually)

* Contrast with [insert deep network of choice]: all outputs are the same,
given any input




Attention

* Some things are more important than others

I accord sur la zone économique européenne a été signé en ao(t 1992 . <end>
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i Figure from [3]

Diagram derived from Fig. 3 of Bahdanau, et al. 2014




Recurrent Neural Networks

* In short, recurrent neural
networks (RNNs) break the
typical “directed acyclic”
pedagogy of deep networks by
introducing self-loops

* Allows information to persist
through multiple iterations

* We can get around problems
introduced by loops by
“unrolling” the loops

* This permits backprop to work as
VHIE]




Recurrent Neural Network

* “List” structure intrinsically handles variable-length data

one to one one to many many to one many to many many to many

* Think: convolution, but over time instead of space




Recurrent Neural Networks

* Use the same “parameter sharing” as CNNs
* And linear dynamical systems!

* f maps each time point to the next
* Also updates internal state h




Recurrent Neural Networks

* Four main equations at each time point
d® = b+ WhtD + yz®
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Recurrent Neural Networks

* RNNs are great for modeling sequences, but by themselves cannot
capture attention

* Long-term dependencies require an explicit *memory”




Long-term Dependencies

* RNNs compose
the same
activation
function
repeatedly

* Think:
recurrence
relations

* Results in highly

nonlinear —20I t 0 o 20
bEhaVior nput coordinate

Projection of output




Long-term Dependencies

* Put another way, recall the internal state update:

RO — WTHE=D

* Where have we seen this before...

h) = (WH)THO W =XAXT
Y = XTA X RO

* Eigenvalues are raised to the power t, decaying any eigenvalue < 1

* Any component of h® not aligned with largest eigenvalue will
be discarded




Long-term Dependencies

* *| grew up in France... | speak fluent French.”




Long-Short Term Memor

* Or "LSTM"
* A variant of the gated RNN

* Each hidden state comprises a forget
gate

* Determines what to “remember” and
what to discard

* Functions on self-loop input




LSTM versus “vanilla” RNN

* A "vanilla” RNN contains only a single activation

* LSTMs have four interacting layers in each step




Other RNN Variants




Encoder-Decoder Networks

[

Encoder

* Maps input to output sequences ‘ . > L
* Each mapping not necessarily of
equal length! @ @ 0 ‘@

* Cis a"“semantic summary”

* Think: input “subspace”

* Have to ensure Cis of sufficient
dimensionality to represent input Dec"deiY\

space é




Deep Recurrent Networks

e Each recurrent state can feed
into a series of hidden states

* Analogous to hidden markov
models (HMMs) with attention
and nearly infinite support for
hidden states




Conclusions

* Recurrent neural networks
* A generalization of convolution (or is a convolution a generalization of
recurrence?): uses same parameter-sharing idea

* Introduces self-loops, but over discrete intervals: loops can be “unrolled”
so backpropagation can still be used as normal

* Still have trouble with long-term dependencies, such as language
translation (vanishing / exploding gradient)
* Long-short term memory

* Introduce a series of gates within the self-loops
* Gates determine what to remember, what to discard

* No ill-conditioned gradients

* Other gated variants
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