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Dimensionality Reduction

* Reduce the number of random variables under consideration
* Reduce computational cost of downstream analysis
* Remove sources of noise in the data
* Define an embedding of the data
* Elucidate the manifold of the data

» We’ve covered several strategies so far




Principal Component Analysis (PCA)

1. Orthogonal projection of data
2. Lower-dimensional linear space known as the principal subspace

3. Variance of the projected data is maximized

Two definitions of PCA

Maximizing Variance Minimizing Reconstruction Error




Kernel PCA

* In kernel PCA, we consider data that have already undergone a
nonlinear transformation:

zeRP () € RM

* We now perform PCA on this new M-dimensional feature space




Sparse PCA

* We still want to maximize u,'Su,, subject to u,/u, = 1

* ...and one more constraint: we want to minimize | |u;/ [,

* Formalize these constraints using Lagrangian multipliers

N D
min || X — WU’-’“H%ﬂE_jlnwim +72|W¢H1




Stochastic SVD (SSVD)

* Uses random projections to find close approximation to SVD

 Combination of probabilistic strategies to maximize convergence
likelihood

* Easily scalable to massive linear systems




Dictionary Learning

* This gives the minimization
n

min f-—Bg-q+h5-)

min > (117 — BA:||2 + h(G:)
1=

where h promotes sparsity in the coefficients, and B is chosen from

a constraint set

* The general dictionary learning problem then follows
1
(0, B) = || X — BO||F + h(O) + g(B)

where specific choices of h and g are what differentiate the
different kinds of dictionary learning (e.g. hierarchical, K-SVD, etc)




Autoencoders

e "Self encode”

* ANNs with output = input

o: X —> F

Vi F =&
¢,¢ = argmin [|X — (0 ¢) X||?

encoder

decoder




Autoencoders

e Learn a “non-trivial” identity
function

|II

* Low-dimensional “code”

* No other assumptions

+

Very compact

representation * Difficult to interpret
No strong a priori * Prone to “collapse”
form (flexible)

* PCA: maximize variance /
minimize reconstruction

* Linearly independent
* Gaussian

* Dictionary Learning: sparse code
/ minimize reconstruction

* Nonlinear

* Kernel / Sparse PCA




Autoencoders

* Key point: autoencoders should be undercomplete
* Code dimension < input dimension

L(Z, g(f(Z)))

* [ is some loss function penalizing g(f(x)) for being dissimilar from x

 If fand g are linear, and L is mean squared error, undercomplete AE
learns to span the same subspace as PCA

_ - — (o 2
qﬁ,w—argrg’gl X — (pop)X||

U = argm(}n X —UAUt|)?




Sparse Autoencoders

* g(h) is decoder output
* h = f(x), encoder output
* () is sparsity penalty

— —

* Note on regularizer p(0, %) = logp(z]0) + logp(0)

“ s ; R lari MAP th
No straightforward Typical” penalties can egularized then But autoencoder

e . i maximizes: o .
Bayesian interpretation be viewed as a MAP regularization relies only
of regularizer approximation to on the data. It’s more of a

with regularizers as functions” than a prior.
priors over parameters




Denoising Autoencoders

* Instead of learning

L(Z, g(f(Z)))
L(Z,9(f(Z)))

where X is a corrupted version of x

* Learn

* Forces the autoencoder to learn the structure of p,.,(x)
* Form of “stochastic encoder / decoder”




Denoising Autoencoders

* No longer deterministic!

* Given a hidden code h, minimize —log Pjecoder (X| 1)

Pencoder (h’ | :B) Pdecoder (33 | h’)

O




Denoising Autoencoders

* Generalize encoding function to encoding
distribution

Pencoder (E|f) — Pmodel (E|f)

« Same with the decoding distribution Pencoder (P | @)

pdecoder(x‘h) — Pmodel (x‘h)
* Together, these comprise a stochastic
encoder and decoder

Pdecoder (iE I h)

)




Denoising Autoencoders

e Define a corruption process, C
C(z|7)
* Autoencoder learns a reconstruction
distribution preconstruce (X %)

1. Sample a training example x
2. Sample a corrupted version X from C
3. Use (x,X) as a training pair




Denoising Autoencoders

* Optimize
_Effvﬁdata (CE)E;;;NC(;}‘;W) 1ngdecoder (f|h — f(i))

Sample from training ...with respect to learning the

Expectation over
set and compute P uncorrupted data from the

: corrupted examples
expectation P P encoded corrupted data

e Easy choice of C

C(z|7) = N
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Embeddings

* Manifolds would seem to imply representation learning beyond a
simple low-dimensional code

e Autoencoders can learn
powerful relationships in this
regard

* Pose
* Position
» Affine transformations




Generative Models

* Go beyond learning x -> h, instead focused on learning p(x, h)

* Manifold learning with Autoencoders
 Variational Autoencoders (VAEs)

e Deep Belief Networks (DBNs)

* Deep Restricted Boltzmann Machines (DBMs)

e Generative Adversarial Networks (GANSs)

* More next week!




Conclusions

e Autoencoders
» Multilayer perceptron (ANN) that is symmetric
* Output =input
* Goalis to learn a non-trivial identity function, or an undercomplete code h

e Sparse Autoencoders
* Include a sparsity constraint on the code

* Denoising Autoencoders
* Learn a mapping to de-corrupt data

* Include a corruption process C
* Equates to a traversal of the data manifold -> generative modeling primer
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A brief aside: SSVD

* Matrix A

* Find a low-rank approximation of A
* Basic dimensionality reduction

1A — QQTA|| < e

Preconditioning




Approximating range of A

* INPUT: A, k, p
« OUTPUT: Q

1. Draw Gaussian n x k test matrix Q
2. Form product Y = AQ

3. Orthogonalize columns of Y =Q




Approximating SVD of A

* INPUT: Q
* OUTPUT: Singular vectors U

1. Form k x n matrix B=Q'A
2. Compute SVD of B = UzVT
3. Compute singular vectors U = QU




Empirical Results

* 1000x1000 matrix

 Several runs of empirical
results (blue) to

theoretical lower bound
(red)

 Error seems to be
systemic




Power |terations

 Affects decay of eigenvalues / singular values

Y = (AAYIAQ




Empirical Results
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Why does this work?

* Three primary reasons:

1. Johnson-Lindenstrauss Lemma
* Low-dimensional embeddings preserve pairwise distances
(1 —e)llu—|* <[ f(w) = F@)I° < (1 +€)llu—v|?

2. Concentration of measure

* Geometric interpretation of classical idea: regular functions of
independent random variables rarely deviate far from their
means

3. Preconditioning

e Condition number: how much change in output is produced —
from change in input (relation to #1) |)\ i ‘
min

* Q matrix lowers condition number while preserving overall
system

| Amax|




Course Details

* Projects!
* 3 presentations per day

* 9 teams—20 minutes hard speaking
time limit

* Presentations are the week after
Thanksgiving break

* Thursday is FULL
* Wednesday is ALMOST FULL

* First come, first serve!

Final Project Deliverables Due




