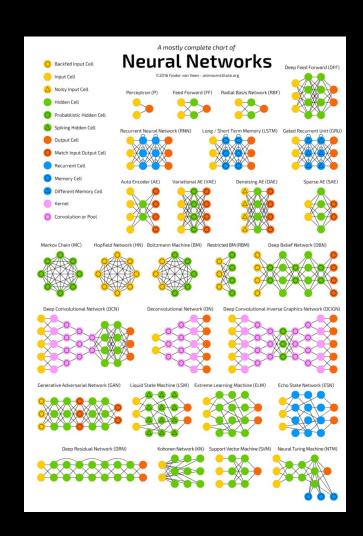
CSCI 4360/6360 Data Science II

The Neural Network Zoo

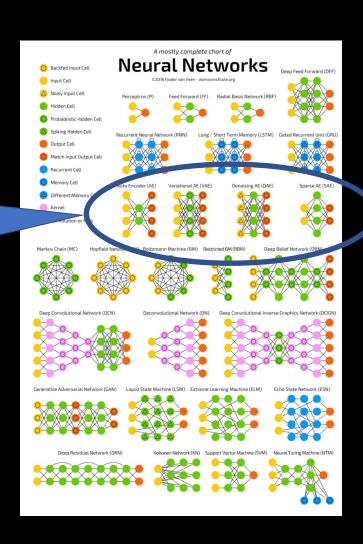
 http://www.asimovinstitute.org /neural-network-zoo/



The Neural Network Zoo

 http://www.asimovinstitute.org /neural-network-zoo/

Today

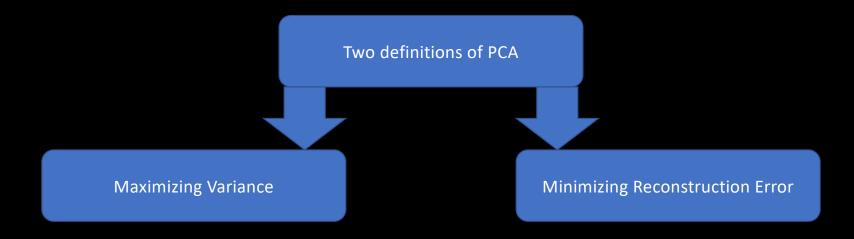


Dimensionality Reduction

- Reduce the number of random variables under consideration
 - Reduce computational cost of downstream analysis
 - Remove sources of noise in the data
 - Define an embedding of the data
 - Elucidate the manifold of the data
- We've covered several strategies so far

Principal Component Analysis (PCA)

- 1. Orthogonal projection of data
- 2. Lower-dimensional linear space known as the principal subspace
- 3. Variance of the projected data is maximized



Kernel PCA

• In kernel PCA, we consider data that have already undergone a nonlinear transformation:

$$\vec{x} \in \mathcal{R}^D$$
 $\phi(\vec{x}) \in \mathcal{R}^M$

• We now perform PCA on this new M-dimensional feature space

Sparse PCA

- We still want to maximize $u_i^T S u_i$, subject to $u_i^T u_i = 1$
- ...and one more constraint: we want to minimize $||u_i||_1$
- Formalize these constraints using Lagrangian multipliers

$$\min_{W,U} ||X - WU^T||_F^2 + \gamma \sum_{n=1}^N ||\vec{w}_i||_1 + \gamma \sum_{i=1}^D ||\vec{u}_i||_1$$

Stochastic SVD (SSVD)

- Uses random projections to find close approximation to SVD
- Combination of probabilistic strategies to maximize convergence likelihood
- Easily scalable to *massive* linear systems

Dictionary Learning

This gives the minimization

$$\min_{B,\Theta} \sum_{i=1}^{n} \left(||\vec{x}_i - B\vec{\theta}_i||_q^q + h(\vec{\theta}_i) \right)$$

where h promotes sparsity in the coefficients, and B is chosen from a constraint set

• The general dictionary learning problem then follows

$$\phi(\Theta, B) = \frac{1}{2}||X - B\Theta||_F^2 + h(\Theta) + g(B)$$

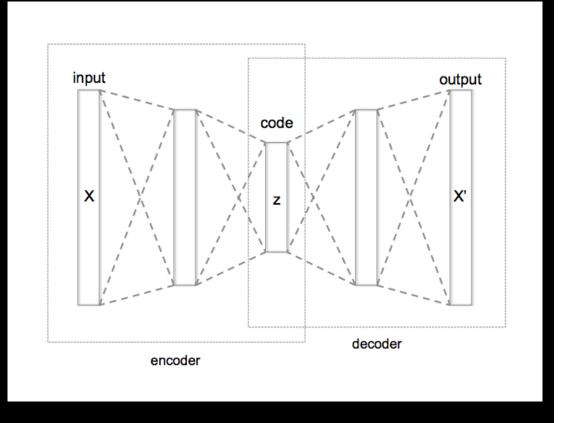
where specific choices of h and g are what differentiate the different kinds of dictionary learning (e.g. hierarchical, K-SVD, etc)

- "Self encode"
- ANNs with output = input

$$\phi: \mathcal{X} \to \mathcal{F}$$

$$\psi: \mathcal{F} o \mathcal{X}$$

 $|\phi, \psi = \arg\min_{\phi, \psi} ||X - (\psi \circ \phi)X||^2$



- Learn a "non-trivial" identity function
- Low-dimensional "code"
- No other assumptions

- Very compact representation
- No strong a priori form (flexible)

- Difficult to interpret
- Prone to "collapse"

- PCA: maximize variance / minimize reconstruction
 - Linearly independent
 - Gaussian
- Dictionary Learning: sparse code / minimize reconstruction
 - Nonlinear
- Kernel / Sparse PCA

- Key point: autoencoders should be undercomplete
 - Code dimension < input dimension

$$L(\vec{x}, g(f(\vec{x})))$$

- L is some loss function penalizing g(f(x)) for being dissimilar from x
- If f and g are linear, and L is mean squared error, undercomplete AE learns to span the same subspace as PCA

$$\phi, \psi = \arg\min_{\phi, \psi} ||X - (\psi \circ \phi)X||^2$$
$$U = \arg\min_{U} ||X - U\Lambda U^T||^2$$

Sparse Autoencoders

- *g*(*h*) is decoder output
- h = f(x), encoder output
- Ω is sparsity penalty

 $p(\vec{\theta}, \vec{x}) \equiv \log p(\vec{x}|\vec{\theta}) + \log p(\vec{\theta})$

 $L(\vec{x}, g(f(\vec{x}))) + \Omega(\vec{h})$

Note on regularizer

No straightforward Bayesian interpretation of regularizer "Typical" penalties can be viewed as a MAP approximation to Bayesian inference, with regularizers as priors over parameters Regularized MAP then maximizes:

But autoencoder regularization relies only on the data. It's more of a "preference over functions" than a prior.

Instead of learning

$$L(\vec{x}, g(f(\vec{x})))$$

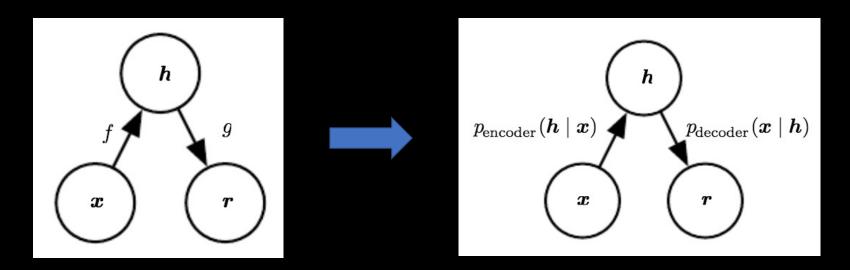
Learn

$$L(\vec{x}, g(f(\tilde{x})))$$

where \tilde{x} is a corrupted version of x

- Forces the autoencoder to learn the structure of $p_{data}(x)$
- Form of "stochastic encoder / decoder"

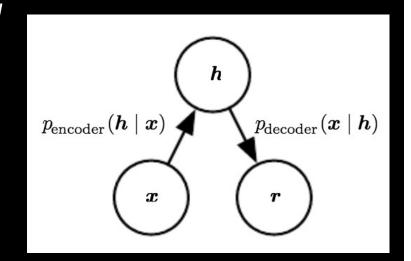
- No longer deterministic!
- Given a hidden code h, minimize $-\log p_{decoder}(x|h)$



• Generalize encoding function to *encoding* distribution

$$p_{\mathrm{encoder}}(\vec{h}|\vec{x}) = p_{\mathrm{model}}(\vec{h}|\vec{x})$$

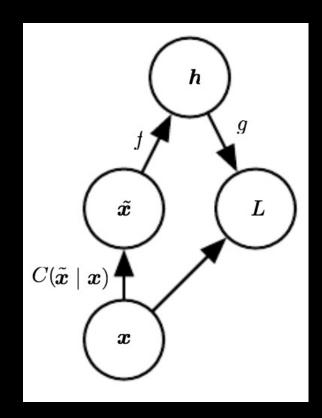
- Same with the $extit{decoding distribution}$ $p_{ ext{decoder}}(ec{x}|ec{h}) = p_{ ext{model}}(ec{x}|ec{h})$
- Together, these comprise a *stochastic* encoder and decoder



• Define a corruption process, C

$$C(\tilde{x}|\vec{x})$$

- Autoencoder learns a reconstruction distribution $p_{reconstruct}(x \mid \tilde{x})$
- 1. Sample a training example x
- 2. Sample a corrupted version \tilde{x} from C
- 3. Use (x, \tilde{x}) as a training pair



Optimize

$$-\mathbb{E}_{\vec{x} \sim \hat{p}_{\text{data}}}(\vec{x}) \mathbb{E}_{\tilde{x} \sim C(\tilde{x}|\vec{x})} \log p_{\text{decoder}}(\vec{x}|\vec{h} = f(\tilde{x}))$$

Sample from training set and compute expectation

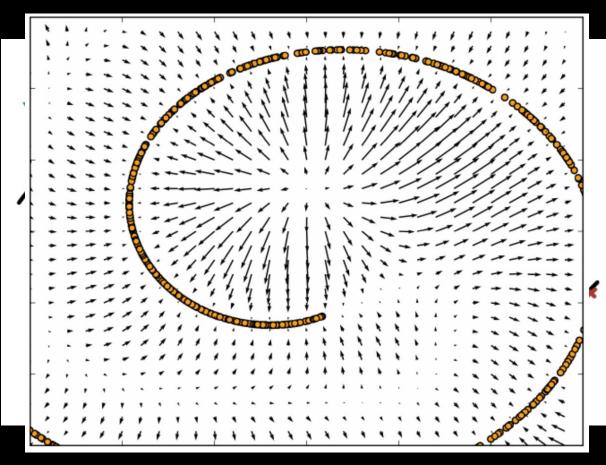
Expectation over corrupted examples

...with respect to learning the uncorrupted data from the encoded corrupted data

• Easy choice of C

$$C(\tilde{x}|\vec{x}) = \mathcal{N}(\tilde{x}; \mu = \vec{x}, \Sigma = \sigma^2 I)$$

- DAEs train to map \tilde{x} back to uncorrupted x
- Gray circle = equiprobable C
- Vector from \tilde{x} points approximately to nearest x on manifold
- DFA learns a vector field around a manifold



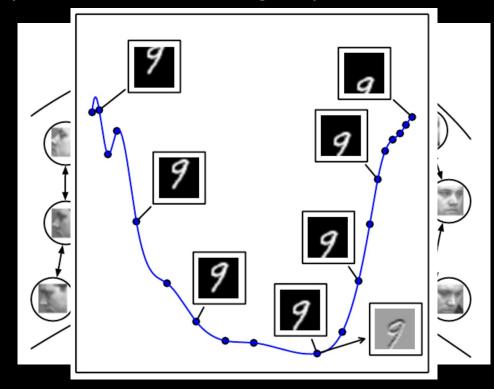
Embeddings

• Manifolds would seem to imply representation learning beyond a

simple low-dimensional code

 Autoencoders can learn powerful relationships in this regard

- Pose
- Position
- Affine transformations



Generative Models

- Go beyond learning $x \rightarrow h$, instead focused on learning p(x, h)
- Manifold learning with Autoencoders
- Variational Autoencoders (VAEs)
- Deep Belief Networks (DBNs)
- Deep Restricted Boltzmann Machines (DBMs)
- Generative Adversarial Networks (GANs)
- More next week!

Conclusions

- Autoencoders
 - Multilayer perceptron (ANN) that is symmetric
 - Output = input
 - Goal is to learn a non-trivial identity function, or an undercomplete code h
- Sparse Autoencoders
 - Include a sparsity constraint on the code
- Denoising Autoencoders
 - Learn a mapping to de-corrupt data
 - Include a corruption process C
 - Equates to a traversal of the data manifold -> generative modeling primer

References

- Deep Learning Book, Chapter 14: "Autoencoders" http://www.deeplearningbook.org/contents/autoencoders.html
- DL4J documentation, "Denoising Autoencoders" http://deeplearning.net/tutorial/dA.html

A brief aside: SSVD

- Matrix A
 - Find a low-rank approximation of A
 - Basic dimensionality reduction

Approximating range of A

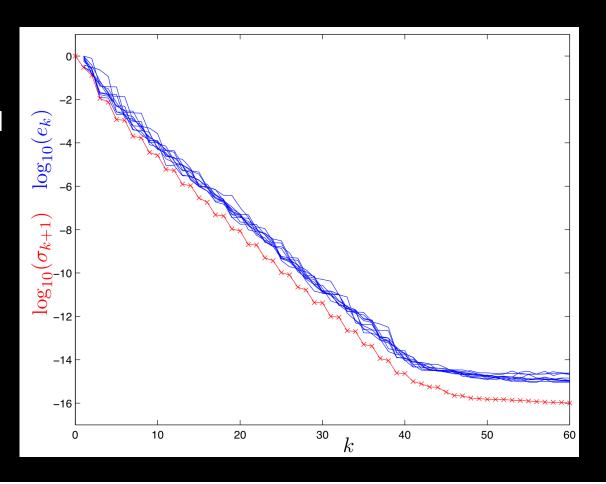
- INPUT: *A*, *k*, *p*
- OUTPUT: Q
- 1. Draw Gaussian n x k test matrix Ω
- 2. Form product $Y = A\Omega$
- 3. Orthogonalize columns of $Y \rightarrow Q$

Approximating SVD of A

- INPUT: Q
- OUTPUT: Singular vectors *U*
- 1. Form k x n matrix $B = Q^TA$
- 2. Compute SVD of B = $\hat{U}\Sigma V^T$
- 3. Compute singular vectors $U = Q\hat{U}$

Empirical Results

- 1000x1000 matrix
- Several runs of empirical results (blue) to theoretical lower bound (red)
- Error seems to be systemic

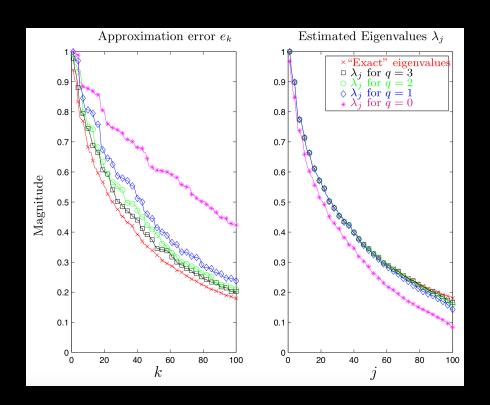


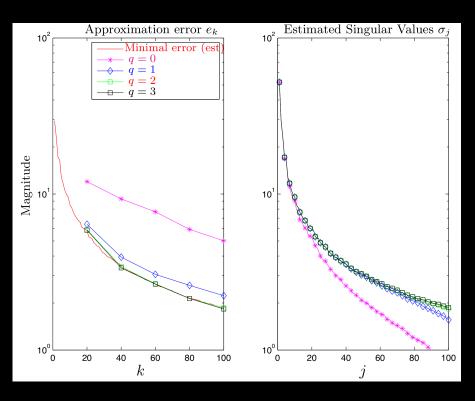
Power iterations

• Affects decay of eigenvalues / singular values

$$\mathsf{Y} = (\mathsf{A}\,\mathsf{A}^*)^q\,\mathsf{A}\,\mathsf{\Omega}$$

Empirical Results





Why does this work?

• Three primary reasons:

1. Johnson-Lindenstrauss Lemma

• Low-dimensional embeddings preserve pairwise distances

$$(1-arepsilon)\|u-v\|^2 \leq \|f(u)-f(v)\|^2 \leq (1+arepsilon)\|u-v\|^2$$

2. Concentration of measure

 Geometric interpretation of classical idea: regular functions of independent random variables rarely deviate far from their means

3. Preconditioning

- Condition number: how much change in output is produced from change in input (relation to #1)
- Q matrix lowers condition number while preserving overall system

$$\kappa = rac{|\lambda_{ ext{max}}|}{|\lambda_{ ext{min}}|}$$

Course Details

- Projects!
 - 3 presentations per day
 - 9 teams—20 minutes hard speaking time limit
 - Presentations are the week after Thanksgiving break
- Thursday is FULL
- Wednesday is ALMOST FULL
- First come, first serve!

Thurs, 12/7	Final Project Deliverables Due
Thurs, 11/30	Final Project Presentations
Wed, 11/29	Final Project Presentations
Tues, 11/28	Final Project Presentations