Backpropagation

CSCl 4360/6360 Data Science Il

Artificial Neural Networks

* Not a new concept!

e Roots as far back as 1940s

yvork.m unsuperivsed 1986 paper by Rumelhart

et al—fastest

e Took off in 1980s and 1990s | béc:pro'pagatiqn. |
« Waned in 2000s ~_ algorithm since origina

1970s version
* “Biologically-inspired”
computing
* May or may not be true

* Shift from rule-basedto)7
emergent learning

Multilayer networks

e Simplest case: classifier is a
multilayer network of logistic
units

Input nodes layer

Input X1 l
* Each unit takes some inputs

and produces one output nputx2 o
using a logistic classifier

e OQutput of one unit can be R
the input of other units

Hidden nodes layer

LR as a Graph

* Define output o(x) =

O'(U)O—FZ’LU?;XZ') = 1+exp(—(

1

Sigmoid Unit

Multilayer networks

e Simplest case: classifier is a
multilayer network of legistic Hidden nodes layer
. Input nodes layer
units that perform some _—
[[M ur X
differentiable computation s

* Each unit takes some inputs [E=EECN

and produces one output
i 1cti T Input x3

—

e Output of one unit can be
the input of other units

Learning a multilayer network

* Define a loss (simplest case: squared error)
* But over a network of “units” that do simple computations

Jx y(W) = Z(?f —§")?

(]
* Minimize loss with gradient descent

* You can do this over complex networks if you can take the gradient of each
unit: every computation is differentiable

Sigmoid Unit

ANNSs in the 90s

* In the 90s: mostly 2-layer networks (or specialized “deep” networks
that were hand-built)

* Worked well, but training was slow

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
6@25:28 S2: f. maps ‘ C5: |

:f. = : layer .
. 6@14x14 I 0 P:layer CQUTPUT

1
— -

"l e |

A\ NN\

I
Full oonn*ectnon ‘ Gaussian connections

Convolutnons Subsamplmg Convolutlons Subsampllng Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

ANNSs in the 90’s

PROC. OF THE IEEE, NOVEMBER 1998

C3:f. maps 16@10x10
INPUT C1: feature maps $4: f. maps 16@5x5
6@28x28

32432 $2: f. maps C5:layer Eg; jayer OUTPUT
84 10

N

PR

e |
‘ Fullocn*ecnon] Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

eural Network, here fo ition. Each plane is a feature map, i.c.

SVM with
polynomial
kernel: 98.9 -
99.2% accurate

SV pG{ Y &
RS-SVM poly 5
[dist) V-SVM poly 8

[16x186] LeNet-1
LeNet-4

LeNet-4 / Local
LeNet-4 / K-NN
LeNet-5

[dist] | aNpt=5

|dist] Boosted LeNet-4

Custom CNN:
98.3-99.3%
accurate

Nomenclature

* Backpropagation: refers only to the method for computing the
gradient of a function

* Is NOT specific to multilayer neural networks (in principle, can compute
gradients for any function)

 Stochastic gradient descent: conducts learning using the derived
gradient

* Hence, you can run SGD on gradients you derive manually, or through
backprop

Notation

* “Borrowing” from

* William Cohen at Carnegie Mellon (author of SSL algorithm you implemented
in HW4)

 Michael Nielson of

http://neuralnetworksanddeeplearning.com/

Notation

Notation

* Each digit is 28x28 = 784
dimensions / inputs

Notation

B

Notation

Computation is “feedforward”

forl=1, 2, ... L:

ad = owda™ +bh.

Notation

e Set up a cost function, C

€= 3 ly(a) - a* (@)

* Rewrite as an average

1 1
C=—-2 Co whee Co=_lly—a"|f

Allows us to compute partial derivatives dC,/dw and dC,/db for
single training examples, then recover dC/dw and dC/db by
averaging over training examples.

Notation

neuron j, layer [

b (

BackProp: last layer

Matrix form:

st =V,C 0o ().

onents are
components are fid
6ajL

The Hadamard Product: just
element-wise multiplication

Level [for I=1,...,L
Matrix: w/
Vectors:
bias b/
activation d
pre-sigmoid activ: Z/
target output y
“local error” &'

BackProp: last layer

Level [for I=1,...,L

Matrix: w/

Vectors:
bias b/

(SL — (aL — y) © O',(ZL) activation o

pre-sigmoid activ: Z/
target output y
“local error” &'

Matrix form for square loss:

BackProp: error at level [in terms of error at
level [+1

51 — ((wl+l)T51+l) 0 O"(Zl)
which we can use to compute

oc Level [for I=1,...,L
B Matrix: w/
Vectors:

1 al

X o},HO yid activ: 2/
tput y

“local error”&!

BackProp: Summary

Level [for I=1,...,L
Matrix: w/
Vectors:
bias b/
activation @’
pre-sigmoid activ: Z/
target output y
“local error” &'

Full Backpropagation

1. Input x: Set the corresponding activation a! for the input

layer.

. Feedforward: Foreach [= 2,3, ..., L compute ' = w!a!~! + &/
and d' = o(2).
Use SGD to update the

weights according to
the gradients

. Output error §“: Compute the vector §* = V,C © ¢’ (z%).

. Backpropagate the error: Foreach/=L-1,L-2,...,2

compute &' = (WHHT61) @ ¢/(Z).

. Output: The gradient of the cost function is given by

aC _ I-1g aC _ sl
- = q 5jandab;_6j.

Example

e Simple equation

f(@,y,2) = (z+y)z
 Some example inputs

* X=-2

sy=5

cz=-4

[slightly less simple] Example

1

* 2D Logistic Regression, P(Y =1]X) = 1= 00— <~ 5
—(Wo i Wi

with a bias term

Weight updates for multilayer ANN

* For nodes k in output layer L:

* For nodesj in hidden layer h:

 What happens as the layers get further and further from the output
layer?

Gradients are unstable Max 2t 1/4

Derivative of sigmoid function

* If weights are usually < 1, and
we are multiplying by many,
many such numbers...

Understanding the difficulty of training deep feedforward neural networks

Xavier Glorot Yoshua Bengio
DIRO, Université de Montréal, Montréal, Québec, Canada

Layer 1
Layer 2
—Layer 3

—Layer 4

Layer 5

MA

-0.05 0.05
Backpropagau,d gradients

Histogram of gradients in a 5-layer network for an
artificial image recognition task

Understanding the difficulty of training deep feedforward neural networks

e et At O o o o P o

— Sigmoid depth 5
Sigmoid depth 4
Tanh
Softsign
Softsign N
Tanh N

w
o

,U\‘)wl\ Pre-training

J‘. 'J
oyl j“'

v '*“‘_*A) ’
"Wl ¥

W
Wl

J

test error %

F e
o

M‘.Mtkﬁﬁ
ol \

| by
w\u,._\Jl , 'M‘L‘ L“

AT Y
-y "l.r'.k"f,»-.vu.r».. Nl
MY A

v "v.\“M]! ll l" A
Wy W, A‘,‘-\',H‘I "\' v
W W

1.0 15
exemples seen

It’s easy for sigmoid units to saturate

and neuron gets “stuck”

‘m:- Learning rate approaches zero,
ner :’);iowl- X; v L

0 = G(net) =

Derivative of sigmoid function

't’s easy for sigmoid units to saturate

It’s easy for sigmoid units to saturate

* If there are 500 non-zero inputs initialized with a Gaussian “N(0,1)

then the SD is m ~ 99 4

Layer 2

|||~ Layer 1

il — Layer 3
il — Layer 4

epochs

Bottom layer still
stuck for first 100

10(

T

80

(i

60

i

L

Epochs of 20k mini-batch updates

T
A
40

I

it

I
i
L

=

aN[eA UONBATIOY

from Glorot & Bengio 2010 -

- using a smarter

initialization scheme

TR

e Saturation visualization

Q
4+
(O
S
D)
4+
qu)
V)
O
4+
Vg
=
-
D)
S
O
-
20
Vg
S
O
-
>~
Vg
(O
Q
)S
ot

What’s Different About Modern ANNs?

Some key differences

» Use of softmax and entropic loss instead of quadratic loss

e Use of alternate non-linearities
* ReLU and hyperbolic tangent

» Better understanding of weight initialization

* Data augmentation
e Especially for image data

* Ability to explore architectures rapidly

Cross-entropy loss

Cross-entropy loss

Figure 5: Cross entropy (black, surface on top) and
quadratic (red, bottom surface) cost as a function of two
weights (one at each layer) of a network with two layers,

W, respectively on the first layer and W5 on the second,
output layer.

Cross-entropy loss after a softmax
layer gives a very simple,

Soft m aX O utp ut | aye r numerically stable gradient: (y - at)

Some key differences

e Use of softmax and entropic loss instead of quadratic loss.

» Often learning is faster and more stable as well as getting better accuracies
in the limit

* Use of alternate non-linearities
* Better understanding of weight initialization

* Data augmentation
* Especially for image data

* Ability to explore architectures rapidly

Some key differences

e Use of softmax and entropic loss instead of quadratic loss.

* Often learning is faster and more stable as well as getting better accuracies in
the limit

e Use of alternate non-linearities
* reLU and hyperbolic tangent

* Better understanding of weight initialization

* Data augmentation
* Especially for image data

* Ability to explore architectures rapidly

Alternative non-linearities

e Changes so far
* Changed the loss from square error to cross-entropy (no effect at test time)
* Proposed adding another output layer (softmax)

* A new change: modifying the nonlinearity
* The logistic is not widely used in modern ANNs

Alternative non-linearities

* A new change: modifying the nonlinearity
* The logistic is not widely used in modern ANNs

* Alternative #1: tanh anh functon.
* Like logistic, but shifted to range [-1, +1] %

4 3 2 14 f 1 2 3 4 &
05
0 S

Understanding the difficulty of training deep feedforward neural networks

e et At O o o o P o

— Sigmoid depth 5
Sigmoid depth 4
Tanh
Softsign
Softsign N
Tanh N

w
o

,U\‘)wl\ Pre-training

J‘. 'J
oyl j“'

v '*“‘_*A) ’
"Wl ¥

W
Wl

J

test error %

F e
o

M‘.Mtkﬁﬁ
ol \

| by
w\u,._\Jl , 'M‘L‘ L“

AT Y
-y "l.r'.k"f,»-.vu.r».. Nl
MY A

v "v.\“M]! ll l" A
Wy W, A‘,‘-\',H‘I "\' v
W W

1.0 15
exemples seen

Alternative non-linearities

* A new change: modifying the nonlinearity
* The logistic is not widely used in modern ANNs

e Alternative #1: tanh —
— loglexp(x) + 1
* Like logistic, but shifted to range [-1, +1] — ngw?x)

. — 1/(1 + exp(-x))
e Alternative #2: RelLU
e Linear with cut-off at zero

e Alternative #2.5: "Soft” RelLU
e Doesn’t saturate (at one end)
 Sparsifies outputs
* Helps with vanishing gradient

Some key differences

e Use of softmax and entropic loss instead of quadratic loss.

* Often learning is faster and more stable as well as getting better accuracies in
the limit

e Use of alternate non-linearities
* reLU and hyperbolic tangent

* Better understanding of weight initialization

* Data augmentation
* Especially for image data

* Ability to explore architectures rapidly

It’s easy for sigmoid units to saturate

* If there are 500 non-zero inputs initialized with a Gaussian “N(0,1)

then the SD is m ~ 99 4

« Common heuristics for initializing weights

1 —1 1
N {0, U : .
(Vv # of inputs) V# of inputs’ \/# of 1npu%s)

Initializing to avoid saturation

* In Glorot and Bengio (2010) they suggest weights if level j (with n;
inputs) from

WNU(— V6 V6]

L \/TLJ -+ 41 ’ \/nj -+ UTES!
TYPE Shapeset MNIST CIFAR-10 ImageNet

Softsign 16.27 1.64 55.78 69.14
» Softsign N 16.06 1.72 53.8 68.13
Tanh 27.15 1.76 55.9 70.58
» Tanh N 15.60 1.64 52.92 68.57

summary

* Backpropagation makes training deep neural networks possible
* Known since 1970s, understood since 1980s, used since 1990s, tractable
since 2010s

* Feed-forward versus backward propagation
* Feed-forward evaluates the network’s current configuration, J()
* Backpropagation assigns error in J() to individual weights

* Each layer considered a function of its inputs
» Differentiable activation functions strung together
e Chain rule of calculus

* Modern deep architectures made possible due to logistical tweaks
 Vanishing / Exploding gradient and new activation functions

References

“A gentle introduction to backpropagation”,

“Deep Feed-Forward Networks”, Chapter 6, Deep Learning Book,

“Backpropagation, Intuitions”, CS231n “CNNs for Visual
Recognition”,

* “How the Backpropagation Algorithm works”, Chapter 2, Neural
Networks and Deep Learning,

http://numericinsight.com/uploads/A_Gentle_Introduction_to_Backpropagation.pdf
http://numericinsight.com/uploads/A_Gentle_Introduction_to_Backpropagation.pdf
http://www.deeplearningbook.org/contents/mlp.html
https://cs231n.github.io/optimization-2/
http://neuralnetworksanddeeplearning.com/

