
Backpropagation
CSCI 4360/6360 Data Science II



Artificial Neural Networks

• Not a new concept!
• Roots as far back as 1940s 

work in unsuperivsed 
learning

• Took off in 1980s and 1990s
• Waned in 2000s

• “Biologically-inspired” 
computing
• May or may not be true

• Shift from rule-based to 
emergent learning

1986 paper by Rumelhart 
et al—fastest 

backpropagation 
algorithm since original 

1970s version



Multilayer networks

• Simplest case: classifier is a 
multilayer network of logistic 
units
• Each unit takes some inputs 

and produces one output 
using a logistic classifier 
• Output of one unit can be 

the input of other units

3



LR as a Graph

• Define output o(x) =



Multilayer networks

• Simplest case: classifier is a 
multilayer network of logistic 
units that perform some 
differentiable computation
• Each unit takes some inputs 

and produces one output 
using a logistic classifier 
• Output of one unit can be 

the input of other units

5



Learning a multilayer network

• Define a loss (simplest case: squared error)
• But over a network of “units” that do simple computations

• Minimize loss with gradient descent
• You can do this over complex networks if you can take the gradient of each 

unit: every computation is differentiable

6



ANNs in the 90s

• In the 90s: mostly 2-layer networks (or specialized “deep” networks 
that were hand-built)
• Worked well, but training was slow



ANNs in the 90’s

8

Custom CNN: 
98.3 - 99.3% 

accurate

SVM with 
polynomial 

kernel: 98.9 - 
99.2% accurate



Nomenclature

• Backpropagation: refers only to the method for computing the 
gradient of a function
• Is NOT specific to multilayer neural networks (in principle, can compute 

gradients for any function)

• Stochastic gradient descent: conducts learning using the derived 
gradient
• Hence, you can run SGD on gradients you derive manually, or through 

backprop



Notation

• “Borrowing” from
• William Cohen at Carnegie Mellon (author of SSL algorithm you implemented 

in HW4)
• Michael Nielson of http://neuralnetworksanddeeplearning.com/ 

http://neuralnetworksanddeeplearning.com/


Notation



Notation

• Each digit is 28x28 = 784 
dimensions / inputs



Notation Vectorize: wl is the weight 
matrix for layer l



Notation

Bias

Activation

Vectorize: al and bl are 
activations and bias matrices for 

layer l



Notation



Computation is “feedforward”

16

for l=1, 2, … L:



Notation

• Set up a cost function, C

• Rewrite as an average

17

where

Allows us to compute partial derivatives dCx/dw and dCx/db for 
single training examples, then recover dC/dw and dC/db by 

averaging over training examples.



Notation

18

Error in jth neuron at 
the lth layer



BackProp: last layer

19

Level l for l=1,…,L
Matrix: wl 

Vectors: 
• bias bl

• activation al

• pre-sigmoid activ: zl

• target output y
• “local error”δl

Matrix form:

components are 
components are 

The Hadamard Product: just 
element-wise multiplication



BackProp: last layer

20

Level l for l=1,…,L
Matrix: wl 

Vectors: 
• bias bl

• activation al

• pre-sigmoid activ: zl

• target output y
• “local error”δl

Matrix form for square loss:



BackProp: error at level l in terms of error at 
level l+1

21

Level l for l=1,…,L
Matrix: wl 

Vectors: 
• bias bl

• activation al

• pre-sigmoid activ: zl

• target output y
• “local error”δl

which we can use to compute



BackProp: Summary

22

Level l for l=1,…,L
Matrix: wl 

Vectors: 
• bias bl

• activation al

• pre-sigmoid activ: zl

• target output y
• “local error”δl



Full Backpropagation

Use SGD to update the 
weights according to 

the gradients



Example

• Simple equation

• Some example inputs
• x = -2
• y = 5
• z = -4



[slightly less simple] Example

• 2D Logistic Regression, 
with a bias term



Weight updates for multilayer ANN

• For nodes k in output layer L:

• For nodes j in hidden layer h:

• What happens as the layers get further and further from the output 
layer? 

26



Gradients are unstable

• If weights are usually < 1, and 
we are multiplying by many, 
many such numbers…

27

Max at 1/4

The Amazing 
Vanishing Gradient!



AI Stats 2010

Histogram of gradients in a 5-layer network for an 
artificial image recognition task

input

output

28



AI Stats 2010

29



It’s easy for sigmoid units to saturate

30

Learning rate approaches zero, 
and neuron gets “stuck”



It’s easy for sigmoid units to saturate

31



It’s easy for sigmoid units to saturate

• If there are 500 non-zero inputs initialized with a Gaussian ~N(0,1) 
then the SD is

32



• Saturation visualization 
from Glorot & Bengio 2010 -
- using a smarter 
initialization scheme 

It’s easy for sigmoid units to saturate

33

Bottom layer still 
stuck for first 100 

epochs



What’s Different About Modern ANNs?

34



Some key differences

• Use of softmax and entropic loss instead of quadratic loss
• Use of alternate non-linearities

• ReLU and hyperbolic tangent

• Better understanding of weight initialization
• Data augmentation

• Especially for image data

• Ability to explore architectures rapidly

35



Cross-entropy loss

36



Cross-entropy loss

37



Softmax output layer

38

Δwij = (yi-zi)y j

Cross-entropy loss after a softmax 
layer gives a very simple, 

numerically stable gradient: (y - aL)

Network outputs a 
probability distribution!



Some key differences

• Use of softmax and entropic loss instead of quadratic loss.
• Often learning is faster and more stable as well as getting better accuracies 

in the limit

• Use of alternate non-linearities
• Better understanding of weight initialization
• Data augmentation

• Especially for image data

• Ability to explore architectures rapidly

39



Some key differences

• Use of softmax and entropic loss instead of quadratic loss.
• Often learning is faster and more stable as well as getting better accuracies in 

the limit

• Use of alternate non-linearities
• reLU and hyperbolic tangent

• Better understanding of weight initialization
• Data augmentation

• Especially for image data

• Ability to explore architectures rapidly

40



Alternative non-linearities

• Changes so far
• Changed the loss from square error to cross-entropy (no effect at test time)
• Proposed adding another output layer (softmax)

• A new change: modifying the nonlinearity
• The logistic is not widely used in modern ANNs

41



Alternative non-linearities

• A new change: modifying the nonlinearity
• The logistic is not widely used in modern ANNs

• Alternative #1: tanh
• Like logistic, but shifted to range [-1, +1]

42



AI Stats 2010

depth 4?

43



Alternative non-linearities

• A new change: modifying the nonlinearity
• The logistic is not widely used in modern ANNs

• Alternative #1: tanh
• Like logistic, but shifted to range [-1, +1]

• Alternative #2: ReLU
• Linear with cut-off at zero

• Alternative #2.5: ”Soft” ReLU
• Doesn’t saturate (at one end)
• Sparsifies outputs
• Helps with vanishing gradient

44



Some key differences

• Use of softmax and entropic loss instead of quadratic loss.
• Often learning is faster and more stable as well as getting better accuracies in 

the limit

• Use of alternate non-linearities
• reLU and hyperbolic tangent

• Better understanding of weight initialization
• Data augmentation

• Especially for image data

• Ability to explore architectures rapidly

45



It’s easy for sigmoid units to saturate

• If there are 500 non-zero inputs initialized with a Gaussian ~N(0,1) 
then the SD is

• Common heuristics for initializing weights

46



Initializing to avoid saturation

• In Glorot and Bengio (2010) they suggest weights if level j (with nj 
inputs) from

47

First breakthrough deep learning results were based 
on clever pre-training initialization schemes, where 
deep networks were seeded with weights learned 

from unsupervised strategies

This is not always the 
solution – but good 
initialization is very 
important for deep 

nets!



Summary

• Backpropagation makes training deep neural networks possible
• Known since 1970s, understood since 1980s, used since 1990s, tractable 

since 2010s

• Feed-forward versus backward propagation
• Feed-forward evaluates the network’s current configuration, J()
• Backpropagation assigns error in J() to individual weights

• Each layer considered a function of its inputs
• Differentiable activation functions strung together
• Chain rule of calculus

• Modern deep architectures made possible due to logistical tweaks
• Vanishing / Exploding gradient and new activation functions



References

• “A gentle introduction to backpropagation”, 
http://numericinsight.com/uploads/A_Gentle_Introduction_to_Bac
kpropagation.pdf 
• “Deep Feed-Forward Networks”, Chapter 6, Deep Learning Book, 

http://www.deeplearningbook.org/contents/mlp.html 
• “Backpropagation, Intuitions”, CS231n “CNNs for Visual 

Recognition”, https://cs231n.github.io/optimization-2/ 
• “How the Backpropagation Algorithm works”, Chapter 2, Neural 

Networks and Deep Learning, 
http://neuralnetworksanddeeplearning.com/ 

http://numericinsight.com/uploads/A_Gentle_Introduction_to_Backpropagation.pdf
http://numericinsight.com/uploads/A_Gentle_Introduction_to_Backpropagation.pdf
http://www.deeplearningbook.org/contents/mlp.html
https://cs231n.github.io/optimization-2/
http://neuralnetworksanddeeplearning.com/

