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Artificial Neural Networks

• Not a new concept!
• Roots as far back as 1940s 

work in unsuperivsed 
learning

• Took off in 1980s and 1990s
• Waned in 2000s

• “Biologically-inspired” 
computing
• May or may not be true

• Shift from rule-based to 
emergent learning

1986 paper by Rumelhart 
et al—fastest 

backpropagation 
algorithm since original 

1970s version



Multilayer networks

• Simplest case: classifier is a 
multilayer network of logistic 
units
• Each unit takes some inputs 

and produces one output 
using a logistic classifier 
• Output of one unit can be 

the input of other units
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LR as a Graph

• Define output o(x) =



Multilayer networks

• Simplest case: classifier is a 
multilayer network of logistic 
units that perform some 
differentiable computation
• Each unit takes some inputs 

and produces one output 
using a logistic classifier 
• Output of one unit can be 

the input of other units
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Learning a multilayer network

• Define a loss (simplest case: squared error)
• But over a network of “units” that do simple computations

• Minimize loss with gradient descent
• You can do this over complex networks if you can take the gradient of each 

unit: every computation is differentiable
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ANNs in the 90s

• In the 90s: mostly 2-layer networks (or specialized “deep” networks 
that were hand-built)
• Worked well, but training was slow



ANNs in the 90’s
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Custom CNN: 
98.3 - 99.3% 

accurate

SVM with 
polynomial 

kernel: 98.9 - 
99.2% accurate



Nomenclature

• Backpropagation: refers only to the method for computing the 
gradient of a function
• Is NOT specific to multilayer neural networks (in principle, can compute 

gradients for any function)

• Stochastic gradient descent: conducts learning using the derived 
gradient
• Hence, you can run SGD on gradients you derive manually, or through 

backprop



Notation

• “Borrowing” from
• William Cohen at Carnegie Mellon (author of SSL algorithm you implemented 

in HW4)
• Michael Nielson of http://neuralnetworksanddeeplearning.com/ 

http://neuralnetworksanddeeplearning.com/


Notation



Notation

• Each digit is 28x28 = 784 
dimensions / inputs



Notation Vectorize: wl is the weight 
matrix for layer l



Notation

Bias

Activation

Vectorize: al and bl are 
activations and bias matrices for 

layer l



Notation



Computation is “feedforward”
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for l=1, 2, … L:



Notation

• Set up a cost function, C

• Rewrite as an average
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where

Allows us to compute partial derivatives dCx/dw and dCx/db for 
single training examples, then recover dC/dw and dC/db by 

averaging over training examples.



Notation
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Error in jth neuron at 
the lth layer



BackProp: last layer
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Level l for l=1,…,L
Matrix: wl 

Vectors: 
• bias bl

• activation al

• pre-sigmoid activ: zl

• target output y
• “local error”δl

Matrix form:

components are 
components are 

The Hadamard Product: just 
element-wise multiplication



BackProp: last layer
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Level l for l=1,…,L
Matrix: wl 

Vectors: 
• bias bl

• activation al

• pre-sigmoid activ: zl

• target output y
• “local error”δl

Matrix form for square loss:



BackProp: error at level l in terms of error at 
level l+1
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Level l for l=1,…,L
Matrix: wl 

Vectors: 
• bias bl

• activation al

• pre-sigmoid activ: zl

• target output y
• “local error”δl

which we can use to compute



BackProp: Summary
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Level l for l=1,…,L
Matrix: wl 

Vectors: 
• bias bl

• activation al

• pre-sigmoid activ: zl

• target output y
• “local error”δl



Full Backpropagation

Use SGD to update the 
weights according to 

the gradients



Example

• Simple equation

• Some example inputs
• x = -2
• y = 5
• z = -4



[slightly less simple] Example

• 2D Logistic Regression, 
with a bias term



Weight updates for multilayer ANN

• For nodes k in output layer L:

• For nodes j in hidden layer h:

• What happens as the layers get further and further from the output 
layer? 
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Gradients are unstable

• If weights are usually < 1, and 
we are multiplying by many, 
many such numbers…
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Max at 1/4

The Amazing 
Vanishing Gradient!



AI Stats 2010

Histogram of gradients in a 5-layer network for an 
artificial image recognition task

input

output
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AI Stats 2010
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It’s easy for sigmoid units to saturate
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Learning rate approaches zero, 
and neuron gets “stuck”



It’s easy for sigmoid units to saturate
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It’s easy for sigmoid units to saturate

• If there are 500 non-zero inputs initialized with a Gaussian ~N(0,1) 
then the SD is
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• Saturation visualization 
from Glorot & Bengio 2010 -
- using a smarter 
initialization scheme 

It’s easy for sigmoid units to saturate
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Bottom layer still 
stuck for first 100 

epochs



What’s Different About Modern ANNs?
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Some key differences

• Use of softmax and entropic loss instead of quadratic loss
• Use of alternate non-linearities

• ReLU and hyperbolic tangent

• Better understanding of weight initialization
• Data augmentation

• Especially for image data

• Ability to explore architectures rapidly
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Cross-entropy loss
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Cross-entropy loss
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Softmax output layer
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Δwij = (yi-zi)y j

Cross-entropy loss after a softmax 
layer gives a very simple, 

numerically stable gradient: (y - aL)

Network outputs a 
probability distribution!



Some key differences

• Use of softmax and entropic loss instead of quadratic loss.
• Often learning is faster and more stable as well as getting better accuracies 

in the limit

• Use of alternate non-linearities
• Better understanding of weight initialization
• Data augmentation

• Especially for image data

• Ability to explore architectures rapidly
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Some key differences

• Use of softmax and entropic loss instead of quadratic loss.
• Often learning is faster and more stable as well as getting better accuracies in 

the limit

• Use of alternate non-linearities
• reLU and hyperbolic tangent

• Better understanding of weight initialization
• Data augmentation

• Especially for image data

• Ability to explore architectures rapidly
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Alternative non-linearities

• Changes so far
• Changed the loss from square error to cross-entropy (no effect at test time)
• Proposed adding another output layer (softmax)

• A new change: modifying the nonlinearity
• The logistic is not widely used in modern ANNs
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Alternative non-linearities

• A new change: modifying the nonlinearity
• The logistic is not widely used in modern ANNs

• Alternative #1: tanh
• Like logistic, but shifted to range [-1, +1]
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AI Stats 2010

depth 4?
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Alternative non-linearities

• A new change: modifying the nonlinearity
• The logistic is not widely used in modern ANNs

• Alternative #1: tanh
• Like logistic, but shifted to range [-1, +1]

• Alternative #2: ReLU
• Linear with cut-off at zero

• Alternative #2.5: ”Soft” ReLU
• Doesn’t saturate (at one end)
• Sparsifies outputs
• Helps with vanishing gradient
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Some key differences

• Use of softmax and entropic loss instead of quadratic loss.
• Often learning is faster and more stable as well as getting better accuracies in 

the limit

• Use of alternate non-linearities
• reLU and hyperbolic tangent

• Better understanding of weight initialization
• Data augmentation

• Especially for image data

• Ability to explore architectures rapidly
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It’s easy for sigmoid units to saturate

• If there are 500 non-zero inputs initialized with a Gaussian ~N(0,1) 
then the SD is

• Common heuristics for initializing weights
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Initializing to avoid saturation

• In Glorot and Bengio (2010) they suggest weights if level j (with nj 
inputs) from
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First breakthrough deep learning results were based 
on clever pre-training initialization schemes, where 
deep networks were seeded with weights learned 

from unsupervised strategies

This is not always the 
solution – but good 
initialization is very 
important for deep 

nets!



Summary

• Backpropagation makes training deep neural networks possible
• Known since 1970s, understood since 1980s, used since 1990s, tractable 

since 2010s

• Feed-forward versus backward propagation
• Feed-forward evaluates the network’s current configuration, J()
• Backpropagation assigns error in J() to individual weights

• Each layer considered a function of its inputs
• Differentiable activation functions strung together
• Chain rule of calculus

• Modern deep architectures made possible due to logistical tweaks
• Vanishing / Exploding gradient and new activation functions
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