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Previously…

• Spectral clustering

1. Define graph (affinities -> Laplacian)
2. Compute eigenvectors

(embedding)
3. Cluster embeddings trivially

(K-means)



Embeddings

• What is an embedding?

• Mapping
• Transformation
• Reveals / preserves “structure”

Embedding



Embeddings

• From Vicki Boykis’ 
“What Are 
Embeddings” (2023)
• Transformation
• Compression
• Representation



Embedding Strategies (non-DL)

• Principal Components Analysis (PCA)
• Sparse & Kernel PCA (next Tuesday!)

• Independent Components Analysis (ICA)
• Non-negative Matrix Factorization (NMF)
• Locally-linear Embeddings (LLE)
• Dictionary Learning (next!)

Linear

Sparse & 
Nonlinear

Non-Gaussian

Non-negative

Nonlinear
Sparse & 
Nonlinear

Million Dollar Question:

How do you know the embedding is right?



Embeddings

• If you’re performing 
classification, it’s pretty 
easy to know if your 
embedding is “right”

• Error decreases? 
• Error increases?

• What about 
unsupervised learning? ?



Assumptions

• Choice of embedding -> Assumptions about the data

• What if we knew something about the data?

• “Side information”: we don’t know what classes/clusters the data 
belong to, but we do have some notion of similarity



Side Information

• Define a set S
• for every pair xi and xj that are similar, we put this pair in S

• ”Similar” is user-defined; can mean anything
• Likewise have a set D
• for every pair xi and xj that are dissimilar, we put this pair in D
• can consist of every pair not in S, or specific pairs if information is available

• We have this similarity information; what can we do with it?



Distance Metrics

• Goal: use side-information to learn 
a new distance metric
• Encode our side-information in a 

“metric” A
• Generalization of Euclidean 

distance
• Note when A = I, this is regular 

Euclidean distance
• When A is diagonal, this is a 

“weighted” Euclidean distance
• When data are put through nonlinear 

basis functions 𝜙, nonlinear metrics 
can be learned



Distance Metrics

• Quick Review: What constitutes a valid distance metric?

1:
2:
3:
4:

Triangle Inequality

Non-negativity
Symmetry

Identity of indiscernibles

“Pseudometric”



Form of a Metric

• Learning metric A (G in figure) 
also equivalent to replacing 
each point x with A1/2x and 
using standard Euclidean 
distance
• It’s an embedding!
• Learning a space inhabited by 

your data
• Bonus: easy to incorporate new 

data! (unlike LLE or others)



Learning a Metric (1)

• Goal: Define a metric A that respects 
constraint sets S and D

• Simple enough: constrain all pairs in S 
to have small distances
• Is that all?

• Nope – trivially solved with A = 0



Learning a Metric (2)

• Additional constraint: use pairs in D 
to guarantee non-zero distances
• (choice of 1 is arbitrary; any other 

constant c would have the effect of 
replacing A with c2A)
• Is that all?

• Nope – need to ensure A is positive 
semi-definite (why?)



Aside!

• We used squared Euclidean distance in the first constraint

• But not in the second! Why?

• Squared distance in 2nd constraint would always result in rank-1 A, 
i.e. the data would always be projected on a line
• (proof left as an exercise!)



Learning a Metric (3)

• A third constraint: keep A 
positive semi-definite
• (this means the diagonal is 

always ≥ 0)

• If A is PSD, its eigenvectors 
and eigenvalues exist and are 
real
• Set any negative eigenvalues 

to 0
• Compute A’



Learning a Metric

• We have our constraints!

• How do we learn A?

• (Hint) Linear in 
parameters of A
• (HINT) First two 

constraints are verifiably 
convex



Convex Optimization

• For diagonal A, this is easy

• (just a fancy reformulation of the original constraints)
• Minimizing g is equivalent to solving original problem, up to 

multiplication of A by a positive constant

• Gradient descent! (step-size intrinsically enforces PSD of A)



Convex Optimization

• Trickier for full A

• Gradient ascent + 
iterative projections

• For this to work, 
constraints needed to 
be reversed



Constraint Reformulation

Previous Current

C1

g(A)

C2



GA + IP



GA + IP



Experiments

• Generated artificial 3D 
data
• 2 class
• 3 class
• Separated by y-axis
• Separated by z-axis



Experiments



Experiments



Experiments



Experiments



Other Applications

• Video scene 
segmentation
• Identifying 

dynamic textures 
in videos



Other Formulations

• Deep metric learning

• Differentiates different metric 
constraints
• Contrastive
• Triplet
• Lifted structure



Other Formulations

• Adaptive densities

• Introduces “magnet loss” 
(how does it work?)
• Optimizes over entire 

neighborhoods simultaneously
• Reduces distribution overlap, 

rather than just pairs or triplets 

• Requires ground-truth labels



Other Formulations

• Large-scale metric learning
• If feature space is extremely large, 

iterative eigen-decompositions are 
a deal-breaker
• Nested convex optimization is a 

deal-breaker

• Represent metric A = LTL
• Learn L directly, instead of A

• Use hinge loss to induce 
unconstrained optimization
• Parameter server for SGD-based 

metric updates



Questions?



Midterm Exam

• Some true/false
• Some short answer
• Some multi-part problems (like the homeworks)
• Some “coding” (very short)

• Thursday, Oct 12 (normal lecture time, normal lecture location)



Final Projects

• Teams! (2-4 people)
• ~1.5 homeworks in scope/size
• Some kind of data science + machine learning problem
• Deliverables (proposal, update #1, update #2, final presentations)

• Proposals: due Tuesday, Oct 17 by 11:59pm
• 1-page (maximum) with i) what problem you’re working on, ii) how you 

intend to solve it, iii) what your validation plan is (how do you know it worked 
or didn’t work?).
• Only 1 submission needed per team, should include names of your 

teammates



IOB Symposium

• https://iob.uga.edu/symposium2023/ (posted in #lounge)
• Oct 16-17

• No class on Monday, Oct 16 or Tuesday, Oct 17
• Class as usual on Thursday, Oct 19
• A workshop!

https://iob.uga.edu/symposium2023/
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