Embeddings I:
Metric Learning

CSCI 4360/6360 Data Science |l




Previously...

 Spectral clustering

Define graph (affinities -> Laplacian)

Compute eigenvectors
(embedding)

Cluster embeddings trivially
(K-means)




Embeddings

* What is an embedding?
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Embeddings

W ultimodal input into representations that are easier to
perfararthtensive computation on, in the form of vectors, tensors, or
From Vicki Boykis’ graphs [51]. For the purpose of machine learning, we can think of

“What Are
Embeddings” (2023)

0 us in machine learning to solve spec1f1c

Transformation problems — such as summarizing a document or identifying tags or

Compression labels for social media posts or performing semantic search on a large

' text corpus. The process of compression changes variable feature

Representation d1mens1ons into fixed inputs, allowing them to be passed efficiently
m components of machme learning 5

can also generalize to other tasks and domains through transfer
learning — the ability to switch contexts — which is one of the
reasons embeddings have exploded in popularity across machine
learning applications




Embedding Strategies (non-DL)

Linear

* Principal Components Analysis (PCA)
» Sparse & Kernel PCA (next Tuesday!)

* Independent Components Analysis (ICA) Jon-Gaussian
* Non-negative Matrix Factorization (NMF) Non-negative
* Locally-linear Embeddings (LLE) Nonlinear

« 4. . Sparse &
* Dictionary Learning (next!) S

Sparse &

Million Dollar Question:

How do you know the embedding is right?



Embeddings

* If you're performing
classification, it’s pretty
easy to know if your
embedding is “right”

* Error decreases?
* Error increases?

* What about
unsupervised learning?

p

Training Sample

Test Sample




Assumptions

* Choice of embedding -> Assumptions about the data

* What if we knew something about the data?

» “Side information”: we don’t know what classes/clusters the data
belong to, but we do have some notion of similarity




Side Information

* Defineaset$S
* for every pair x; and x; that are similar, we put this pairin S

* "Similar” is user-defined; can mean anything

* Likewise have a set D
* for every pair x; and x; that are dissimilar, we put this pair in D
 can consist of every pair not in S, or specific pairs if information is available

* We have this similarity information; what can we do with it?




Distance Metrics

* Goal: use side-information to learn
a hew distance metric

* Encode our side-information in a
“metric”’ A

e Generalization of Euclidean
distance

* Note when A =1, this is regular
Euclidean distance

 When A is diagonal, this is a
“weighted” Euclidean distance

* When data are put through nonlinear
basis functions ¢, nonlinear metrics
can be learned




Distance Metrics

e Quick Review: What constitutes a valid distance metric?
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Form of a Metric

 Learning metric A (G in figure)
also equivalent to replacing
each point x with A¥2x and
using standard Euclidean
distance

* It’s an embedding!

* Learning a space inhabited by
your data

* Bonus: easy to incorporate new
data! (unlike LLE or others)

diagonal G

.




Learning a Metric (1)

* Goal: Define a metric A that respects
constraint sets Sand D

* Simple enough: constrain all pairsin S . = 12
- min |17 — 914
to have small distances A

e |s that all? Z,yeSs

* Nope - trivially solved with A =0




Learning a Metric (2)

» Additional constraint: use pairsin D
to guarantee non-zero distances

* (choice of 1 is arbitrary; any other
constant ¢ would have the effect of
replacing A with c?A)

e |s that all?

* Nope — need to ensure A is positive
semi-definite (why?)




Aside!

* We used squared Euclidean distance in the first constraint

: = 2
min 3 117 — 71
T, yeS
* But not in the second! Why?

Z |2 —9ylla > 1

x,yeD
 Squared distance in 2"d constraint would always result in rank-1 A,
i.e. the data would always be projected on a line

* (proof left as an exercise!)




Learning a Metric (3)

* A third constraint: keep A
positive semi-definite
* (this means the diagonal is
always = 0)
* If Ais PSD, its eigenvectors

and eigenvalues exist and are
real

* Set any negative eigenvalues
to 0 A,

 Compute A’

A=XAX"T

= diag(maX{O, )\1}, ceey {0> )‘n})
A =XNXT




Learning a Metric

* \We have our constraints!

* How do we learn A?

* (Hint) Linear in
parameters of A
* (HINT) First two

constraints are verifiably
convex




Convex Optimization

* For diagonal A, this is easy

* (just a fancy reformulation of the original constraints)

* Minimizing g is equivalent to solving original problem, up to
multiplication of A by a positive constant

* Gradient descent! (step-size intrinsically enforces PSD of A)




Convex Optimization

e Trickier for full A

* Gradient ascent +
iterative projections

* For this to work,
constraints needed to
be reversed

Iterate

Iterate
A:=argming {||A" — Al|lr : A" € C1}
A :=argmingy {||A" — Al|r : A" € Cs}
until A converges
A=A+ a(Vag(4))iv.ys

until convergence




Constraint Reformulation

Previous Current

min Y (17— 71 - 3 (7§ <1

Z,jeS Z,7€S
> IE=7lla>1 max » |7~ glla
z,yeD Z,jED

A= 0 Ar0 -




Iterate

Iterate
A :=argming {||A" — A||r : A" € C1}
A:=argming {||A" — A||p : A" € C5}
until A converges
A=A+ a(Vag(A))Lvas

until convergence

Iterate
Iterate

d o llE-glh <1
Z,jes + A=0
until A converges

A At av o X Il

Z,yeD

until convergence




p-chem properties

—_

p-chem properties




Experiments

2—class data (original) 3-class data (original)

* Generated artificial 3D
data
» 2 class
* 3 class
e Separated by y-axis
e Separated by z-axis

Original 2—class data




Experiments

2-class data (original) 2-class data projection (Newton)
2—class data projection (IP)




Experiments

3-class data (original) 3-class data projection (Newton) 3-class data projection (IP)
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Experiments

Original 2—class data Porjected 2—class data




Experiments

Original data Projected data




Other Applications

* VVideo scene
segmentation

* |dentifying
dynamic textures
in videos




Other Formulations

* Deep metric learning

e Differentiates different metric
constraints
* Contrastive

* Triplet (a) Triplet: bef (b) Triplet: af
. a) Triplet: before. riplet: after.
e Lifted structure 2 4

Lifted struct loss




Other Formulations

* Adaptive densities
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* Reduces distribution overlap,
rather than just pairs or triplets

* Requires ground-truth labels
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min, Y [|L(z —y)|?
(z,y)ES

Other Formulations st. |L@—y)2>1,V(z,y) €D

* Large-scale metric learning miny, . %es IZ(z — y)[I” + A . %ED €o,y

* If feature space is extremely large, [ERZEETACEEN] I Ty SNy NN INC XN R
iterative eigen-decompositions are
adeal-breaker PSS AEI I pRE (SR ) ACTMI
* Nested convex optimization is a (z,y)€S (z,y)€D
deal-breaker

* Represent metricA=1L"L
* Learn L directly, instead of A

* Use hinge loss to induce

unconstrained optimization

* Parameter server for SGD-based
metric updates




Questions?




Midterm Exam

* Some true/false
* Some short answer
* Some multi-part problems (like the homeworks)

e Some “coding” (very short)

* Thursday, Oct 12 (normal lecture time, normal lecture location)




Final Projects

* Teams! (2-4 people)

* ~1.5 homeworks in scope/size

* Some kind of data science + machine learning problem

* Deliverables (proposal, update #1, update #2, final presentations)

* Proposals: due Tuesday, Oct 17 by 11:59pm
* 1-page (maximum) with i) what problem you’re working on, ii) how you
intend to solve it, iii) what your validation plan is (how do you know it worked
or didn’t work?).
* Only 1 submission needed per team, should include names of your
teammates




| Deep Learning
Applic dw )ns ™ m Bioinformatics

. (posted in #lounge)
* Oct 16-17

* No class on Monday, Oct 16 or Tuesday, Oct 17

* Class as usual on Thursday, Oct 19
* A workshop!



https://iob.uga.edu/symposium2023/
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