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Embeddings

• What is an embedding?

• Mapping
• Transformation
• Reveals / preserves “structure”

Embedding



Embeddings

• “Degrees of freedom” versus “intrinsic dimensionality”

• Despite 64x64 pixels, only so many ways to draw a 9
• Low-dimensional manifold



Principal Component Analysis (PCA)

1. Orthogonal projection of data 
2. Lower-dimensional linear space known as the principal subspace
3. Variance of the projected data is maximized

Two definitions of PCA

Maximizing Variance Minimizing Reconstruction Error



Maximizing Variance

• We start with the idea of projection from D-dimensions x to M-
dimensions u
• u is a unit vector, so uTu = 1.

• Mean of projected data is 𝑢!𝑥̅, where 𝑥̅ = "
#
∑$%"# 𝑥$

• Variance of the projected data

• where S is the sample covariance 
matrix of the data 



Maximizing Variance

• We want to maximize projected variance u1
TSu1 with respect to u1

• Obvious problem: needs to be constrained, or else ||u1|| -> ∞

• Appropriate constraint: u1
Tu1 = 1, enforced with Lagrange multiplier

• Set derivative with respect to u1 = 0, and a stationary point appears

• Means u1 must be an eigenvector of S! Left-multiply by u1
T

• Variance will be max when these are 1st eigenvalue & eigenvector



Minimizing Error

• We want the reconstruction error using the first M < D principal 
components to be minimal

• This can be rewritten purely in terms of eigenvectors ui

• Therefore, the distortion measure of 
reconstruction using the M eigenvectors
of the largest eigenvalues is the sum
of the remaining D - M eigenvalues

We want to 
minimize J

Eigenvectors ui come 
out of equation for !𝑥



Minimizing Error



Principal Component Analysis

Advantages
• Optimal low-rank approximation 

in terms of squared 
reconstruction error
• Completely unsupervised
• Endless applications

Disadvantages
• Principal components are linear 

combinations (cannot generate 
nonlinear PCs; struggles to 
determine PCs in geodesic 
spaces)
• Basis vectors are dense and 

sometimes difficult to interpret



Kernel PCA

• Whenever we compute a kernel, we rely on a scalar (dot) product of 
the form xTx
• Conventional PCA is an outer product (covariance), XTX
• What if we replaced this with an inner product, XXT

• This “Gram matrix” is what we compute eigenvectors of in PCA anyway

• If anything, Kernel PCA is a generalization of PCA to arbitrary 
similarity (kernel) functions!
• First step: express conventional PCA such that data vectors x appear 

only in the form of scalar products



Kernel PCA

• Recall that the principal components are defined by eigenvectors of 
the covariance matrix

• and sample covariance matrix defined by

• and eigenvectors are normalized such that

i is the 
dimensional 

index

N is the number 
of data points



Kernel PCA

• In kernel PCA, we consider data that have already undergone a 
nonlinear transformation:

• We now perform PCA on this new M-dimensional feature space



Kernel PCA

• Sample covariance matrix C (now MxM)

• Goal: solve the eigenvector/eigenvalue equation without having to 
explicitly operate in the M-dimensional feature space
• Combining the two equations:
•  This reduces to 



Kernel PCA

• Substitute back into eigenvector equation and we get a royal mess

• Remember our goal: work only in terms of k(xn, xm) = 𝜙(xn)T𝜙(xm)
• Multiply both sides by 𝜙(xl)



Kernel PCA

• Look familiar?
• Which reduces to

• (there’s some normalization magic that has to happen but we’re 
skipping that for now)



Kernel PCA

• Data in original data space (right panel, left subpanel) projected by 
nonlinear transformation into feature space (right subpanel). By 
performing PCA on feature space, PCs correspond to nonlinear 
projections in original data space.



Kernel PCA

• Gaussian kernel 
applied to 2D 
data
• First 8 kernel 

PCs
• Contours are 

lines along 
which the 
projection onto 
the 
corresponding 
PC is constant



Kernel PCA
Data “Regular” PCs

Kernelized PCs



Kernel PCA

Advantages
• Allows for nonlinear principal 

components
• Infinitely flexible in terms of 

allowed kernel functions

Disadvantages
• Requires finding eigenvectors 

and eigenvalues of NxN matrix, 
instead of DxD (large N is 
problematic)
• Cannot project new, unobserved 

data onto L-dimensional 
manifold of kernel



Sparse PCA

• Anyone remember lasso regularization?

• Regularization, in general, is a penalty to encourage small weights 
(remember Assignment 2)
• Lasso (or L1) forces weights to 0 so they become sparse



Sparse PCA

• We still want to maximize ui
TSui, subject to ui

Tui = 1
• …and one more constraint: we want to minimize ||ui||1

• Formalize these constraints using Lagrangian multipliers



Sparse PCA

• Qualitatively 
similar to PCA, 
but with lots 
more zeros



Sparse PCA

Advantages
• Simpler and more interpretable 

components
• Resulting components are very 

similar to “standard” PCA

Disadvantages
• Optimization procedure is non-

convex (often use some version 
of alternating least-squares)



Dictionary Learning

• “Given a set of signals belonging to a certain class, one wishes to 
extract the relevant information by identifying the generating causes; 
that is, recovering the elementary signals (atoms) that efficiently 
represent the data.”
• Regularization, Optimization, Kernels, and Support Vector Machines, Ch. 2

• Every embedding strategy ever?



Dictionary Learning

• Sparse coding
• lp sparsity
• Hierarchical sparse coding
• K-SVD
• Elastic net



Motivations

• Dictionary learning is ideally formulated for image denoising (and is 
indeed a major application of dictionary learning)

Measurements 
(image) Noise

Original 
image



Motivations

• Easily converted to an energy minimization problem

• Some classical priors
• Smoothness
• Total variation
• Wavelet sparsity
• Lasso
• …

Energy 
minimization 

becomes a MAP 
estimation!



Dictionary Learning

• We have our data X 
• and wish to represent it using 

some small number k atoms 
(k <<< n)
• When combined with 

coefficients, the linear 
combinations with the atoms 
should yield a nearly 
complete representation of X



Dictionary Learning

• This gives the minimization

where h promotes sparsity in the coefficients, and B is chosen from 
a constraint set
• The general dictionary learning problem then follows

where specific choices of h and g are what differentiate the 
different kinds of dictionary learning (e.g. hierarchical, K-SVD, etc) 



Dictionary Learning vs PCA

• Remember the operational 
definition of PCA?

1. Orthogonal projection of data 
2. Lower-dimensional linear space 

known as the principal subspace
3. Variance of the projected data is 

maximized

• Dictionary Learning (sparse 
coding)

1. Minimize reconstruction error
2. Linear combination of atoms 
3. Sparse, overcomplete basis

Two definitions of PCA

Maximizing Variance Minimizing Reconstruction Error

Objectives are 
reconstruction, 

sparsity, and 
redundancy



Dictionary Learning



Applications

• Image denoising
• Sparse basis forces out noise

• Identification of functional 
networks of neurons
• Image, video, audio 

processing
• Clustering
• Bag-of-words modeling for 

object categorization
• Image restoration & 

inpainting



Dictionary Learning

• General formulation

• More common: set g to identity*, and h to L1 norm

𝐵 is typically implicitly constrained 
to fall within a convex set C of the k 

x m reals, to make optimization 
tractable



Optimization

• Problems with the objective function?

• Squared loss is convex
• Regularization is convex

• Squared loss + regularization is not convex
• Even worse, often non-smooth



Optimization

• Alternating minimization algorithm
• Two-block Gauss-Seidel

• Streaming online learning
• At iteration (or minibatch) t, signal xt and sparse code 𝜃t are computing 

using the current dictionary 

• Which can then be used to update the dictionary

• g can be efficiently solved using block coordinate descent on columns of B



Rank-1 Dictionary Learning (R1DL)

• KDD 2016

• “Scalable fast”



R1DL

• Reformulates dictionary learning as an alternating least-squares 
problem
• (embraces the optimization procedure)

• Uses 0-”norm” instead of L1
• Given rank-1 formulation, this is an inexpensive way of guaranteeing sparsity

• Iteratively learns rank-1 dictionary atoms until k have been found
• ”Deflates” data matrix on each iteration



R1DL

• Energy function L
• Data matrix S, vectors u and v
• || u || = 1
• || v ||0 ≤ r, where r is the sparsity constraint (literally, # of nonzero elements in 

v)
• Iterate until convergence of u (atoms) and v (sparse codes)

• “Deflate” data matrix
• Repeat until k atoms & sparse codes are learned



Summary

• Principal Components Analysis
• Classic dimensionality reduction technique

• Kernel PCA
• Introduces nonlinearities into component vectors
• Permits use of arbitrary similarity functions
• Can capture much richer and more complex interactions in data
• Much more expensive to compute than PCA

• Sparse PCA
• Qualitatively similar results to PCA
• Components are sparse, improving interpretability
• Learning procedure is non-convex, typically requiring ALS



Summary

• Dictionary learning is focused on developing a basis of atoms and 
coefficients
• Coefficients are sparse
• Atoms form an overcomplete representation of the data
• Chosen to minimize reconstruction error

• Explicitly factorizes out noise
• Can be customized in the form of a prior

• Optimization is often non-convex and non-smooth, requiring 
alternating minimization strategies or online learning
• R1DL focuses on leveraging optimization strategies to iteratively 

learn the basis, one atom at a time
• Other variants include K-SVD, Hierarchical DL, and Elastic Net



Questions?



Resources

• http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/ 
• Elements of Statistical Learning, Chapter 14 

http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_prin
t10.pdf 
• Pattern Recognition and Machine Learning, Chapter 12
• Machine Learning: A Probabilistic Perspective, Chapter 14
• An Introduction to Statistical Learning, Chapter 10 http://www-

bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf 

http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf

