
Graphs
CSCI 4360/6360 Data Science II



Why graphs?

• Lots of data is graphs
• Facebook, Twitter, citation data, and other social networks
• The web, the blogosphere, the semantic web, Freebase, Wikipedia, Twitter, 

and other information networks
• Text corpora (like RCV1), large datasets with discrete feature values, and other 

bipartite networks
• nodes = documents or words
• links connect document à word or word à document

• Computer networks, biological networks (proteins, ecosystems, brains, …), …
• Heterogeneous networks with multiple types of nodes

• people, groups, documents



Properties of Graphs
• Nodes & Edges

• Set V of vertices/nodes v1, …
• Set E of edges (u,v),… 

• Can be weighted/directed/labeled
• Degree of v is # of edges on v

• Indegree and outdegree for weighted graphs
• Path is a sequence of edges (u1,v1),(u2,v2),…
• Geodesic path between u and v is shortest path connecting them

• Diameter is max u,v in V {length of geodesic between u,v}
• Effective diameter is 90th percentile
• Mean diameter is over connected pairs

• (Connected) component is subset of nodes that are all pairwise 
connected via paths

• Clique is subset of nodes that are all pairwise connected via edges
• Triangle is a clique of size three



Properties of Graphs

• Descriptive statistics

• Number of connected components
• Diameter
• Degree distribution
• Centrality
• … 



Properties of Graphs

• Models of formation and growth

• Erdos-Rayni
• Watts-Strogatz
• Preferential attachment
• Stochastic block models
• … 



Biology

• Protein-protein 
interaction networks

• Nodes: proteins
• Edges: interactions

• Functional modules

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org

Can we identify 
functional modules?



Facebook

• Social communities
• Nodes: Facebook 

users
• Edges: Friendships

Can we identify 
social communities?

High school Summer
internship

Stanford (Squash)
Stanford (Basketball)

Social communities



Blogs



Blogs



Graph Models

• Fundamental graph types



Erdos-Renyi graphs

• Take n nodes, and connect each pair with probability p
• Mean degree is z=p(n-1)
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Erdos-Renyi graphs

• Take n nodes, and connect each pair with probability p
• Mean degree is z=p(n-1)
• Mean number of neighbors distance d from v is zd

• How large does d need to be so that zd >=n ?
• If z>1, d = log(n)/log(z)
• If z<1, you can’t do it

• So: 
• There tend to be either many small components (z<1) or one large one (z>1) giant 

connected component)
• Another intuition:

• If there are a two large connected components, then with high probability a few random 
edges will link them up.



Erdos-Renyi graphs

• Take n nodes, and connect each pair with probability p
• Mean degree is z=p(n-1)
• Mean number of neighbors distance d from v is zd

• How large does d need to be so that zd >=n ?
• If z>1, d = log(n)/log(z)
• If z<1, you can’t do it

• So: 
• If z>1, diameters tend to be small (relative to n)



Sociometry, Vol. 32, No. 4. (Dec., 1969), pp. 425-443. 

64 of 296 chains 
succeed, avg chain 
length is 6.2



Illustrations of the Small World

• Milgram’s experiment
• Erdős numbers

• http://www.ams.org/mathscinet/searchauthors.html 

• Bacon numbers
• http://oracleofbacon.org/ 

• LinkedIn
• http://www.linkedin.com/
• Privacy issues: the whole network is not visible to all

http://www.ams.org/mathscinet/searchauthors.html
http://oracleofbacon.org/
http://www.linkedin.com/






Erdos-Renyi graphs

• A good model of degree distribution in ”natural” networks?



Degree distribution

• Plot cumulative degree
• X axis is degree 
• Y axis is #nodes that have degree 

at least k

• Typically use a log-log scale
• Straight lines are a power law; 

normal curve dives to zero at 
some point



Degree distribution

• Plot cumulative degree
• X axis is degree 
• Y axis is #nodes that have degree 

at least k

• Typically use a log-log scale
• Straight lines are a power law; 

normal curve dives to zero at 
some point
• This defines a “scale” for the 

network
a-µ kpk







Graphs

• Some common properties of 
graphs:

• Distribution of node degrees
• Distribution of cliques (e.g., 

triangles)
• Distribution of paths

• Diameter (max shortest-path)
• Effective diameter (90th percentile)
• Connected components

• …

• Some types of graphs to 
consider:

• Real graphs (social & otherwise)
• Generated graphs:

• Erdos-Renyi 
“Bernoulli” or “Poisson”

• Watts-Strogatz “small world” graphs
• Barbosi-Albert “preferential 

attachment”
• …



Graphs

• Some common properties of 
graphs:

• Distribution of node degrees:  
often scale-free

• Distribution of cliques (e.g., 
triangles)

• Distribution of paths
• Diameter (max shortest-path)
• Effective diameter (90th percentile) 

often small
• Connected components usually one 

giant CC
• …

• Some types of graphs to 
consider:

• Real graphs (social & otherwise)
• Generated graphs:

• Erdos-Renyi 
“Bernoulli” or “Poisson”

• Watts-Strogatz “small world” graphs
• Barbosi-Albert “preferential 

attachment” generates scale-free 
graphs

• …



Barabasi-Albert Networks

• Science 286 (1999)
• Start from a small number of node, add a new node with m links
• Preferential Attachment 

• Probability of these links to connect to existing nodes is proportional 
to the node’s degree

• ‘Rich gets richer’

• This creates ‘hubs’: few nodes with very large degrees
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Preferential attachment
(Barabasi-Albert)

Random graph
(Erdos Renyi)



Graphs

• Some common properties of 
graphs:

• Distribution of node degrees:  
often scale-free

• Distribution of cliques (e.g., 
triangles)

• Distribution of paths
• Diameter (max shortest-path)
• Effective diameter (90th percentile) 

often small
• Connected components usually one 

giant CC
• …

• Some types of graphs to 
consider:

• Real graphs (social & otherwise)
• Generated graphs:

• Erdos-Renyi 
“Bernoulli” or “Poisson”

• Watts-Strogatz “small world” graphs
• Barbosi-Albert “preferential 

attachment” generates scale-free 
graphs

• …



Homophily

• One definition: excess edges between similar nodes
• Another definition: excess edges between common neighbors of v
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Homophily

• In a random Erdos-Renyi  graph:

• Probably not realistic!
• In a natural graph, two of your mutual friends might also be friends

• Both in the same class or organization
• You introduced them
• They introduced you
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Watts-Strogatz model

•  Start with a ring
•  Connect each node to k nearest 

neighbors 
• è homophily

•  Add some random shortcuts 
from one point to another

•  è small diameter
•  Degree distribution not scale-

free
•  Generalizes to d dimensions





Googleʼs PageRank

web 
site xxx

web site yyyy

web site a b c 
d e f g

web 

site 

pdq pdq ..

web site yyyy

web site a b c 
d e f g

web 
site xxx

Inlinks are “good” 
(recommendations)

Inlinks from a “good” site 
are better than inlinks from 
a “bad” site

but inlinks from sites with 
many outlinks are not as 
“good”...
“Good” and “bad” are 
relative.

web 
site xxx



Googleʼs PageRank

web 
site xxx

web site yyyy

web site a b c 
d e f g

web 

site 

pdq pdq ..

web site yyyy

web site a b c 
d e f g

web 
site xxx Imagine a “pagehopper” 

that always either

• follows a random link, or

• jumps to random page



Googleʼs PageRank
(Brin & Page, http://www-db.stanford.edu/~backrub/google.html)

web 
site xxx

web site yyyy

web site a b c 
d e f g

web 

site 

pdq pdq ..

web site yyyy

web site a b c 
d e f g

web 
site xxx Imagine a “pagehopper” 

that always either

• follows a random link, or

• jumps to random page

PageRank ranks pages by 
the amount of time the 
pagehopper spends on a 
page:

• or, if there were many 
pagehoppers, PageRank is 
the expected “crowd size”



Random Walks

avoids messy “dead ends”….



Random Walks: PageRank



Random Walks: PageRank



Graph = Matrix
Vector = Node à Weight

H

A B C D E F G H I J

A _ 1 1 1

B 1 _ 1

C 1 1 _

D _ 1 1

E 1 _ 1

F 1 1 1 _

G _ 1 1
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I 1 1 _ 1

J 1 1 1 _
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PageRank

• Let u = (1/N, …, 1/N)
• dimension = #nodes N

• Let A = adjacency matrix: [aij=1 ó i links to j]
• Let W = [wij = aij/outdegree(i)]

• wij is probability of jump from i to j
• Let v0 = (1,1,….,1) 

• or anything else you want
• Repeat until converged:

• Let vt+1 = cu + (1-c)Wvt

• c is probability of jumping “anywhere randomly”



Next: spectral clustering!






