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Parametric Statistics

e Assume some functional form (Gaussian, Bernoulli, Multinomial,
logistic, linear) for
* P(X;|Y) and P(Y) as in Naive Bayes
* P(Y[X) as in Logistic Regression

e Estimate parameters (i, a2, 8, w, B) using MLE/MAP
* Plug-n-chug

* Advantages: need relatively few data points to learn parameters

* Drawbacks: Strong assumptions rarely satisfied in practice




Embeddings

* Again!

* MINIST, projected into
2D embedding space

 What distribution do
these follow?

* Highly nonlinear




Nonparametric Statistics

» Typically very few, if any, distributional assumptions

e Usually requires more data
e Let number of parameters scale with the data

* Today
* Kernel density estimation
* K-nearest neighbors classification

* Kernel regression
* Su pport Vector Machines (SVMS) > not exactly nonparametric, but kernels are involved!




Density Estimation

* You've done this before—
histograms!

 Partition feature space into
distinct bins with specified
widths and count number of
observations n; in each bin
U2

A
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e Same width is ozften used for
all bins

* Bin width acts as smoothing
parameter




Effect of A

 ## of bins = 1/A
Uz
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* Bias of histogram density estimate

E [p(z)] X / N p(z)dzzp(Z)A

Assuming density is roughly constant in each bin
(roughly true, if A is small)




Bias-Variance Trade-off

p(x) approximately
constant per bin

e Choice of # of bins

e if Ais small

* if Ais large More data per bin
stabilizes estimate

 Bias: how close is mean of estimate to the truth
e Variance: how much does estimate vary around the mean

Small A, large #bins <> “Small bias, Large variance”

Large A, small #bins <—> “Large bias, Small variance”




Bias-Variance Trade-off

Low Variance High Variance




Choice of number of bins

A decreases ——
n, decreases —>

Bias + Variance

MSE

500 1000

Number of Bins




Kernel Density Estimation

* Histograms are “blocky” estimates

n
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* Kernel density estimate, aka “Parzen / moving
window” method
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Kernel Density Estimation

* More generally:

n Xj—x
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* Kis the kernel function

* Much like kernels in Kernel PCA or SVMs: model a relationship between two
data points

* Embodies any number of possible kernel functions




Kernel Density Estimation

* Places small “bumps” at each data point, determined by K

e Estimator itself consists of a [normalized] “sum of bumps”

Img src: Wikipedia

* Where points are denser, density estimate will be higher



Kernels (Gaussian kernel :

* Any function that satisfies K(z)=
> 0

/K :E—l

° SCIPy has a ton Infinite support: need
all points to compute

* See “signal.get_window” estimate. But quite

popular.




Kernels

* Deep theory associated
with kernels and kernel
functions

* Touched on in Kernel PCA
lecture

* Foundational to Support
Vector Machines and Deep
Neural Networks

5.8 Regularization and Reproducing Kernel
Hilbert Spaces

In this section we cast splines into the larger context of regularization meth-
ods and reproducing kernel Hilbert spaces. This section is quite technical
and can be skipped by the disinterested or intimidated reader.

Elements of Statistical Learning, Chpt. 5




Choice of kernel bandwidth

Too small

The Bart-Simpson
Density

0

True Density Undersmoothed

Just right
Too large

0

Just Right Oversmoothed




Histograms versus KDE




KNN Density Estimation

e Recall

* Histograms
* KDE

* Fix A, estimate number of points within A of x (n; or n,) from the
data

* Fix n, = k, estimate A from data (volume of ball around x with k data
points)

-k

e KNN Density Estimation —
y nAk,x




KNN Density Estimation

e k acts as a smoother

* Not very popular for density
estimation
e Computationally expensive
* Estimates are poor

* But related version for
classification is very popular




KNN Classification
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KNN Classification

Test document

@ Sports

O Science

® Arts




KNN Classification

Test document
e k=4

* What should
we predict?

* Average?
Majority? Why? @ Sports

O Science

® Arts




KNN Classification
f*(z) = arg max P(y|z)

e Optimal classifier J
arg max P(z|y)P(y)
Yy

* KNN classifier kaN (CU) arg mya’XﬁkNN (az|y)P(y)
arg max k,,

# of training points in Y
classy

k rainin ints in > n
ﬁk;NN (CIJ‘y) == J ﬁI:Z:;thatglipeowi:;in Z ky =k P(y) = —
Y

'n/yAk,x A ball n
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K even not used
in practice

@ Sports

O Science

® Arts




@ Sports

O Science

® Arts




@ Sports

O Science

® Arts




What is the best k?

* Bias-variance trade-off

* Large k = predicted label is more stable

* Small k = predicted label is more accurate

e Similar to density estimation




1-NN Decision Boundary

Voronoi
Diagram




KNN Decision Boundaries

 Guarantee: Forn — oo, error rate of 1-NN is never more than 2x
optimal error rate




Temperature Sensing

at location x?
* What is the temperature in the room?

> i=1 Yil|| x;,—z||<h

T(2) = S
2i=1 1) x,—z|1<hn

"Local” Average




Kernel Regression

* Or “local” regression

* Nadaraya-Watson Kernel Estimator

n
fn( ) — Y, ..where w; (X)
=1
* Weight each training point on distance to test point

* Boxcar kernel yields local average




Choice of kernel bandwidth
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Choice of kernel is not

multipole multipole =
terribly important!
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Kernel Regression as WLS

* Weighted Least Squares (WLS) * Kernel regression corresponds
has the form to locally constant estimator
n obtained from [locally]

Z w; (f(X;) — }/;)2 weighted least squares

i ser [(X) = f

* Compare to Nadaraya-Watson where f8 is constant

form e (X—XZ-)
wZ(X) — 2?21 17¢ (X—hXi)




Kernel Regression as WLS

n
min Z w; (B —Y;)?
B 1=1 A constant
value

1=1

Individual weights have
tosumto1l

0J (B
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Support Vector Machines

e Linear classifiers—which is
better?

* Pick the one with the
largest margin




Support Vector Machines

=5

No,
= +

X

=+ s

“confidence” = (W.xj -+ b) Y;




Support Vector Machines!

| promise I’'m going somewhere with this...




Support Vector Machines

* Maximize the margin

 Distance of closest example
/ data point from the
decision boundary /
hyperplane:

margin =y = 2a/||w|




Support Vector Machines

e Rewrite the equation (drop a
in favor of 1)

min W.w

w,b
s.t. (W.x+b) y; 21 Vj
* Solve via quadratic
programming

e Data points along margin =
support vectors




SVMs

 What if the data aren’t linearly
separable?

* Allow for “errors”

mi? w.w + C #mistakes
w,

s.t. (w.x+b)y; 21 Vj

* Maximize margin AND
minimize mistakes
* C: tradeoff parameter




SVMs

 What if the data still aren’t
linearly separable?

* “Soft” margin

* (penalize misclassified data by
how far it is from the margin)

e Recover “hard” margin:




SVMs are great, but...

* Where is this going?

* First, SVMs were the “big thing” right before deep learning

* Neural network research had been dead for 10+ years
* SVMs were showing immense promise, especially with high-dim data

* Second, SVMs share a lot of theory with deep learning

* Much of this theory found a second life in the Transformer architecture that
powers all the modern large language models!




12.2.1 Computing the Support Vector Classifier \‘C‘

The problem (12.7) is quadratic with linear inequality constraints, hence it
is a convex optimization problem. We describe a quadratic programming
solution using Lagrange multipliers. Computationally it is convenient to
re-express (12.7) in the equivalent form

 Start with core parameterization of SVM

min 2 6] Lo

1=1
subject to & >0, yi(z] B+ Bo) > 1— & Vi,

* Write “primal” objective (Lagrange) function

N N
= JIBP+C Y6~ Y auluaT B+ o) — (1- &) Zuzfu
1=1 1=1

* Differentiate with respect to 8, 8y, and {; and setto O




* Substitute back into primal equation, and get the Lagrangian Dual

* Notice anything?

* Kernel!

N 1 NN
Lp = Zai 5 Z Z ;0 Yy (h(T5)
i=14/=1




Training Error: 0.26

0.30
0.21

Test Error:

SVM - Degree-4 Polynomial in Feature Space
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summary

* Nonparametric places mild assumptions on data; good models for
complex data
e Usually requires storing & computing with full dataset

* Parametric models rely on very strong, simplistic assumptions

* Once fitted, they are much more efficient with storage and computation
* Effects of bin width & kernel bandwidth

* Bias-variance trade-off

* Kernel regression
* Comparison to weighted least squares

e Support Vector Machines
e Powerful “shallow” models
* Dual formulation of objective allows for kernel functions




Questions?
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Other slides




Case Study: Newsgroups Classification

* 20 Newsgroups
* 61,118 words
* 18,774 documents

* Class label descriptions

comp.graphics
comp.os. ms-windows. misc
comp.svs.ibm pc hardware
comp.svs.mac hardware
comp . windows.x

rec.autos
rec.motorcvcles
rec_sport baseball
rec.sport hockev

talk politics misc

misc forsale talk politics guns

1.crvpt
ci.electronics

scimed

sci.space

talk religion misc
alt atheism

talk politics mideast soc religion christian




Case Study: Newsgroups Classification

* Training/Testing
* 50%-50% randomly split
* 10 runs
* Report average results

e Evaluation Criteria

Z I( predict, — true label.)

ictest set

Accuracy =
¥ i of test samples




Case Study: Newsgroups Classification

— alt.atheism

] . VS.
e Results in binary class *I'" comp.graphics

comparisons

comp.windows.x
VvS.
rec.motorcycles
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