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Last time...

* Motion analysis via optical flow
* Parametric vs energy-based formulations
* Importance of assumptions

* Modern formulations
* Robustness to outliers (large optical flow)
* Relatedness to markov random fields
» Coarse-to-fine image pyramids




Today

* A specific type of motion: dynamic textures
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Dynamic textures

* “Dynamic textured sequences are scenes with complex motion
patterns due to interactions between multiple moving components.”

e Examples
* Blowing leaves
* Flickering flames
* Water rippling

* Multiple moving components: problematic for optical flow
* How to analyze dynamic textures?




Dynamical Models

* Goal: an effective procedure for tracking changes over sequences of
images, while maintaining a certain coherence of motions




Dynamical Models

* Hand tracking

* Top row: slow
movements

e Bottom row: fast
movements

* Fixed curves or
priors cannot
exploit coherence
of motion




Linear Dynamical Models

* Two main components (using notation from Hyndman 2006):

Appearance yt — C./I;t Ut

Model

e > Lt — Ail?t—l + W’Ut




Autoregressive Models

* This is the definition of a 1st-order autoregressive (AR) process!

ry = Az 1 + Wy

* Each observation (x;) is a function of previous observations, plus some
noise

 Markov model!




Autoregressive Models

* AR models can have higher orders than 1

* Each observation is dependent on the previous d observations

e = A1 1+ Aoxy_o+ ... + Agxe_g + Wy




Appearance Model

* y,: image of height h and
width w at time t, usually
flattened into 1 x hw
vector

* X,: state space vector at
timet, 1 x g (where g <<<

hw)
* u,: white Gaussian noise

* C: output matrix, maps
between spaces, hw x g

Output matrix

Yy = Oy + uy

. Low- ..
Image in a Noise inherent

”State” y




Appearance Model

Yy = Czy + uy

Each of these is 1
column of C.

There are g of them
(first 4 shown here).




Appearance Model

* How do we learn the
appearance model?

* Choose state-space U-hat is a matrix of

dimension Sjze q the first q(cjolumns of

* Noise term isi.i.d
Gaussian

Yy = Cxy + Uy

Y = [glvg27 ceey
Y =UxV?T

V-hat is a matrix of the
first g columns of V, and
sigma-hat is a diagonal
matrix of the first g
singular values




State Mode|

State transition
* X; and x;.;: state space matrix
vectors at times tand t —

1, each 1 x g vector '/I;t p— Aa'/‘t_l —l— W/Ut

* A: transition matrix, g x q
matrix

. . . Low- Low-
* W: driving noise, g x q dimensional P N ——
matrix state at time t state at t - 1

* v;: white Gaussian noise




State Mode|
e = Axi_1 + Wy

* Three textures

red: water, blue: trees1, black: trees2

oq:Z




State Mode|

e How do we learn the state model?

ry = Axi_1 + Wy

* Homework 2, ahoy!




LDS as Generative Models

* Once we’ve learned the parameters, we can generate new instances

* Major strength of LDS!




Problems with LDS

* PCA = Linear + Gaussian
* What if the state space isn’t linear, or data aren’t Gaussian?

* Nonlinear appearance models
* Wavelets
* [soMap
* LLE
* Kernel PCA
 Laplacian Eigenmaps

* These introduce their own problems!




Problems with LDS

* Comparing LDS models

* Given a sequence Y: 0 = (C7 A7 Q)

* New sequence Y — (C,, A,, Q’)
* How do we compare these
systems?

* Despite linear formulation, @
are NOT Euclidean

* Valid distance metrics include
spectral methods and
distribution comparators




Comparing LDS

* Select multiple, non-overlapping patches from each video
* Build LDS for each patch
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Comparing LDS

* Embed the LDS in low-dimensional space
* We'll come back to this when we discuss embeddings!

» Compute cluster centroids in embedding space BRI etngllrEy Ak
J
* These centroids become codewords

* Represent videos as a document of codewords
* Compute TF-IDF

* Perform classification on document weight vectors




Comparing LDS
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Deep learning + dynamic textures

Fine-tuned

| }//’ Texture CNN
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Figure 4.3: Examples of DT slices in three orthogonal planes of foliage, traffic and
sea sequences from the DynTex database. (a) xy (spatial), (b) xt (temporal) and (c)
yt (temporal).




Conclusion

* Dynamic textures are motion with statistical regularity
* Regularity can be exploited through parametric representation

e Linear dynamical systems (LDS)
* Autoregressive models (AR)
* Markov assumption
* Representation model + State model
* Generative models

* Deep networks can learn the same feature set and in some cases
exceed the performance of LDS (though are harder to train)
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