Linear and Ensemble
Methods

CSCl 4360/6360 Data Science |l

.................................

In general, the goal:

* Construct a predictor f:

X ->Y that minimizes
risk R(f)

Classification:

R(f) = P(f(X) #Y)

Probability of Error

DJ INDU AVERAGE (DOW JONES & CO

as of 22-Jan-2010

11000
10500 A |
10000 r .

v.\< "Al [= ?

'.vr' ||., Y H
9500] I | |
) Novil Decol Dec21 Jan0g
Copyright 2010 Yahoo! Inc. http://finance .yahoo.com/ X = Fe b01
Regression:

R(f) = E[(f(X) = Y)?]

Mean Squared Error

Optimal [regression] predictor

f*=arg ingn E[(f(X) = Y)?]

= E[Y|X] (Conditional Mean)

We can prove this!

f* = argmin E[(f(X) - Y)?] = E[Y|X]

* Therefore, for any prediction rule f R(f) > R(JM)
« We defineR(f) R(f) = Exy[(f(X) — Y)Q]

* Expand according to axiom of conditional probability

= Ex[Eyx[(f(X) - Y)?|X]]

It escalates quickly...
= Ex[Eyix[(f(X) - Y)?|X]]

* (dropping subscripts for convenience)

= E[E[(f(X)-E[Y|X]+E[Y|X]-Y)?

X]]

* Multiplying out the quadratic term

E[E[(f(X) - E[Y|X])*|X]
= +H2E((f(X) - EIY | X])(E[Y |X] - Y)|X]
+E[(E[Y|X] -Y)*|X]]

E [(f(X) - E[Y|X])?] +@

Finally...

= E[(f(X)- E[Y|X])*] + R(f*)
>0

Intuition: Signal plus (zero-mean) Noise model

Y = (X)) +e

Depends on unknown distribution Pxy

Empirical Risk Minimization (EMR)

e Since we don’t have direct access to the unknown
distribution P(X, Y), we rely on statistics

Optimal predictor: F*=argminE[(f(X) — Y)?]

f
Empirical Risk Minimizer: fn = arg ;cm@ (f(Xz') . Y;)Q
c

Class of predictors Empirical mean

S|+

Zn: lloss(Y;, £(X;))] —2wotlarge, gy [loss(Y, £(X))]
i—=1

Numbers

Part I: Linear Models

Linear Models

* Means each fin F_ is restricted to a class of linear functions (in X)

fo = arg& Z(f(X) — Y;)?

Univariate case
* You've seen this a million times... f(X) — 51 —|— ﬁQX

F(X)

[- intercept

Multivariate case

FOX) = XWX P = 8 XD 4 3 X3 4 3, X P

— Xﬁ
* where

X=[XW ., XxP]8=8,..,5)"

Finding the estimator

. 1 &
* Back to our original equation f,” = arg min — Z (f(X;) — Y};)Q

* Substitute in our line parameter 5 1
B=argmin= 3" (X;8 - Y;)°

=
* Expand the square '

= arg min l(AB ~ Y)Y (AB-Y)
B n

where X3 xH o xP

A=

Xn P xp

Finding the estimator

AN

B3 =argmin l(AB ~Y)'(AB-Y)
n

B
J(B) = (AB-Y)"(AB-Y)
— arg min J(3)

S

Normal Equations
(ATAY3 =ATY
pxp px1 p x1
* |If (ATA) is invertible, this is easily solved!

3= ATA)1AlY

 When is (ATA) invertible?
* When A is full rank (recall Linear Algebra Review lectures)

Geometric Interpretation

fhx)=x8=Xx(ATA)1ATY

* f (A) is the orthogonal projection of Y onto

the linear subspace spanned by the columns
of A (aka X)

* (go back and review the Linear Algebra
notes!)

Normal Equations

* We saw how to solve when (ATA) is invertible
* Unspoken was the assumption that it is also small

* What about when (A'A) is invertible, but very large?
» Gradient descent! J(B) is convex!

Update: Bitl — t_ga‘g(;)
t

= 6'—a AT(AB' - Y)
0if g'=p

Initialize: 50

Normal Equations

* What about when (ATA) is not invertible?
* Prior + regularization

Bumap = arg maxlog p({(X;, Y;) 118, %) +log p(B)

\ J
|

log likelihood log prior

Non-invertible case

* What kinds of priors?

. . o n
OSSN Buap = argmin 3 (Vi = XiB)* + A|5]I3
i=1 l

* Laplace prior ~ &
Buae = argmin 3 (¥; = X;8)° + Al
1=1

 What’s the difference?

Types of regularization
min(A8 = Y)' (A3 =Y) + Apen()
Ridge regression (L2) Lasso regression (L1)

Bs with constant J(B)
(level sets of J(B))

L1 (Lasso) results

in sparse
solutions

Bs with B2
constant

|2 norm \/

Bs with
constant

|1 norm
Very good for

high-dimensional
problems!

Part Il: Ensemble Models

Nonlinear decision boundaries

* Sometimes we encounter problems
that linear models can’t solve

Bias-variance trade-off

* Bias
* E[0-X]
* Deviation of the estimator from the
true value on average

* Variance
* E(X?) - E(X)?
* Spread of the data from its average

* As one decreases, the other tends
to increase

* Low-bias, low-variance is not
generally possible

Low Bias

High Bias

Low Variance

High Variance

Ensemble Models

* Collections of “weak learners”
* Decision Trees -> Random Forests
* Logistic Regression -> Pool of Logistic Regressors
* Naive Bayes -> Ensemble of Naive Bayes
e Support Vector Machine -> Ensemble of SVMs

e Each is trained independently on a subset of the training data
* Decisions are made by pooling all the individual models’ predictions

* Instead of learning a single (weak) classifier, learn many (weak)
classifiers that are good at different parts of the input space

Boosting

* Given a weak learner, run it multiple times on (reweighted) training
data, then let learned classifiers vote

* On each iteration t:
* weight each training example by how incorrectly it was classified

* learn a weak hypothesis (classifier) h;
 a strength of the hypothesis a;

* Final classifier

H(X) = sign(>at ht(X))

Boosting example

Boosting example

final

=sign| .42 +0.65 +0.92

Part Il xgboost

XGBoost

* eXtreme Gradient Boosting

» 29 Kaggle challenges with
winners in 2015
e 17 used XGBoost dmic

* 8 of these solely used XGBoost; XGBoost eXtreme Gradient Boosting
the others combined XGBoost with

DNNs

» KDDCup 2015

* Every single top 10 finisher used
XGBoost

XGBoost Applications

 Store sales prediction

* High energy physics event classification
* Web text classification

* Customer behavior prediction

* Motion detection

* Ad click through rate prediction
* Malware classification

* Product categorization

* Hazard risk prediction

* Massive on-line course dropout rate
prediction

dmlc
XGBoost eXtreme Gradient Boosting

Properties of XGBoost

* Single most important factor in its success: scalability
* Due to several important systems and algorithmic optimizations

1.Highly scalable end-to-end tree boosting system

2.Theoretically justified weighted quantile sketch for efficient proposal
calculation

3.Novel sparsity-aware algorithm for parallel tree learning
4.Effective cache-aware block structure for out-of-core tree learning

What is “tree boosting”?

* Given a dataset (n tree tree2
examples, m features)
D = {(xs,4:)} (D] = n,x; € R™,y; € R), VBN
* Tree ensemble uses K @ =t
additive functions to ” w0 p +09 Py

predict output .
f(@)=2+09=29 f &3)=-1-09=-19

Figure 1: Tree Ensemble Model. The final predic-
tion for a given example is the sum of predictions
from each tree.

K
g = d(x:) = > fu(xs), fu €F,
k=1

What is “gradient boosting”?

Gradient Boosting [J. Friedman, 1999]

Statistical view on boosting

® = Generalization of boosting to arbitrary loss functions

Residual fitting

Ground truth

tree 3

@/t Sklearn. ensemble.GradientBoostingClassifier |Regressor

10

Regularized objective function

Instance index

.

5> Ky 12 D 19

gradient statistics

a1, h1

g2, h2

g3,h3

g4, hd

g5, h5

i

I3 ={2,3,5}
Y N
P Gs=g2+ 93+ g5
I = {1} I = {4} Hs = ho 4+ hs + hs
Gi=n Go =g
Hl = hl H4 . }Iu1

. G? .
Obj = — ZJ. H,,i,\ + 3y

The smaller the score is, the betterthe structure is

Figure 2: Structure Score Calculation. We only
need to sum up the gradient and second order gra-
dient statistics on each leaf, then apply the scoring
formula to get the quality score.

Split-finding algorithms

* Exact
e Computationally demanding
* Enumerate all possible splits for continuous features

* Approximate

* Algorithm proposes candidate splits according to percentiles of feature
distributions

* Maps continuous features to buckets split by candidate points
» Aggregates statistics and finds best solution among proposals

Comparison of split-finding

* Two variants
* Global

* Local

0.83

0.82 —

0.81

Test AUC
o
3

S
3
o

®—® cxact greedy
< global eps=0.3
B3 |ocal eps=0.3

¥—¥ global eps=0.05

=3
=
3

i
39
(2]

0.75

0 10 20 30 40 50 60 70 8 90
Number of lterations

Figure 3: Comparison of test AUC convergence on
Higgs 10M dataset. The eps parameter corresponds
to the accuracy of the approximate sketch. This
roughly translates to 1 / eps buckets in the proposal.
We find that local proposals require fewer buckets,
because it refine split candidates.

Shrinkage and column subsampling

* Shrinkage
* Scales newly added weights by a factor n
* Reduces influence of each individual tree
 Leaves space for future trees to improve model
 Similar to learning rate in stochastic optimization

* Column subsampling
* Subsample features
* Used in Random Forests
* Prevents overfitting more effectively than row-sampling

Sparsity-aware split finding

32

* Equates sparsity with o e Ba“j“”“”"‘
missing values s 4 g
. 3 2 :
* Defines a “default” .
direction: follow the s 05 vty v ot
= | parsity aware aigorithm
observed paths T
* Compare to “dense” method 0.0625
0.03125

1 2 4 8 16

Number of Threads
Figure 5: Impact of the sparsity aware algorithm
on Allstate-10K. The dataset is sparse mainly due
to one-hot encoding. The sparsity aware algorithm
is more than 50 times faster than the naive version
that does not take sparsity into consideration.

How does this work?

* Features need to be in sorted order to determine splits

* Concept of blocks
* Compressed column (CSC) format
* Each column sorted by corresponding feature value

* Exact greedy algorithm: all the data in a single block

* Data are sorted once before training and used subsequently in this
format

Feature transformations in blocks

Layout Transformation of one Feature (Column) The Input Layout of Linear scan over presorted columns
Three Feature Columns to find best split

= o |2 :::i>@e & 2@

8 —0 : ; :
' : - - ;GL =g+ 94 Gr=g2+93+9s5
-—H) l : - - S :

v

S gl,h1 g4 hd g2,h2 g5.h5 g3,h3

(O Gradient statistics of each example "1 Missing values are not stored
[T Feature values —» Stored pointer from feature value to instance index

More on blocks

 Data is stored on multiple blocks, and these blocks are stored on disk

* Independent threads pre-fetch specific blocks into memory to

prevent cache misses
* Block Compression

e Each column is compressed before being written to disk, and decompressed
on-the-fly when read from disk into a prefetched buffer

* Cuts down on disk I/0
* Block Sharding

* Data is split across multiple disks (i.e. cluster)
* Pre-fetcher is assigned to each disk to read data into memory

Cache-aware access

Exact Greedy Algorithm Approximate Algorithms

* Allocate an internal buffer in * Choice of block size is critical
each thread * Small block size results in small

* Fetch gradient statistics workloads for each thread

* Perform accumulation in mini- * Large block size results in cache
batch misses as gradient statistics do

 Reduces runtime overhead not fit in cache

when number of rows is large

Cache-aware access

128

Time per Tree(sec)
S Y

-l
(2]

Exact

Basic algorithm

@@ Cache-aware algorithm

Number of Threads

(a) Allstate 10M

Time per Tree(sec)

128

32

16

Approximate

B W block size=222
® - ® block size=2*6
V¥V block size=220

| block size=2424

1 2 4 8 16

Number of Threads

(a) Allstate 10M

Results: out of core

4096
Block compression
2048}
S Basiczgorithm
(]
& 1024 +
[}
S
g Compression+shard
g 512
= Out of system file cache
' start from this point
256 :
1
]
:
1288 256 512 1024 2048

Number of Training Examples (million)

Results: distributed

32768

16384

8192

4096

2048

1024

Total Running Time (sec)

512

256

Spark MLLib

12858

(a) End-to-end time cost include data loading

256 512 1024
Number of Training Examples (million)

2048

4096

2048

1024+

512

256

128}

(2]
a

Time per lteration (sec)

w
N

=y
(o2}

Spark MLLib

XGBoost

$28

256 512 1024
Number of Training Examples (million)

2048

(b) Per iteration cost exclude data loading

Results: scalability

2048

1024

512

Time per lteration (sec)

256

1287 8 16 32

Number of Machines
Figure 13: Scaling of XGBoost with different num-
ber of machines on criteo full 1.7 billion dataset.
Using more machines results in more file cache and
makes the system run faster, causing the trend to
be slightly super linear. XGBoost can process the
entire dataset using as little as four machines, and s-
cales smoothly by utilizing more available resources.

Demonstration

https://arogozhnikov.github.io/2016/06/24/gradient boosting explained.html

https://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html

References

* Elements of Statistical Learning, Chapters 3, 9, and 10

» Xgboost: A Scalable Tree Boosting System
* http://arxiv.org/abs/1603.02754

http://arxiv.org/abs/1603.02754

Regularized objective function

Objective £ 3 l(yi,'!ji(t_l) + fi(x:)) + Q(f¢)
L(®) =D UG, y:) + > QS 2
7 k

1 9 2" order R A (t—1) 1, .
where Q(f) =T + §A||w|| 2PprOX. LY = "y, 57) + gife(x) + ghifi (x:)] +Q(f)
1=1

Remove A(t) 3 3 d lh- 07 Q
20 =St + st -0

Scoring function to T (>
evaluate quality of ﬁ(t)(q) o
tree structure

2
i€l gi)
T.
P 4

