
Linear and Ensemble 
Methods

CSCI 4360/6360 Data Science II



In general, the goal:

• Construct a predictor f: 
X -> Y that minimizes 
risk R(f)



Optimal [regression] predictor



We can prove this!

• Therefore, for any prediction rule f

• We define R(f)

• Expand according to axiom of conditional probability



It escalates quickly…

• (dropping subscripts for convenience)

• Multiplying out the quadratic term



Finally…



Empirical Risk Minimization (EMR)

• Since we don’t have direct access to the unknown 
distribution P(X, Y), we rely on statistics



Part I: Linear Models



Linear Models

• Means each f in FL is restricted to a class of linear functions (in X)



Univariate case

• You’ve seen this a million times…



Multivariate case

• where

<latexit sha1_base64="ttJYN0970xVu5HHp5ZBNeNwBreg=">AAACRXicbZDNS8MwGMbT+TXnV9Wjl+AQNhylHUO9CEMvHie4D9jmSLN0C0s/SFJhlP5zXrx78z/w4kERr5p2HejmCyFPfu/7kOSxA0aFNM0XLbeyura+kd8sbG3v7O7p+wct4Ycckyb2mc87NhKEUY80JZWMdAJOkGsz0rYn10m//UC4oL53J6cB6bto5FGHYiQVGug9p9Qpw0uotvuoZJXjCjQMA1ZgcgzKcdLr2USigQWzCXiakWpKqilJTHMezM0DvWgaZlpwWViZKIKsGgP9uTf0cegST2KGhOhaZiD7EeKSYkbiQi8UJEB4gkakq6SHXCL6UZpCDE8UGULH52p5Eqb0tyNCrhBT11aTLpJjsdhL4H+9biidi35EvSCUxMOzi5yQQenDJFI4pJxgyaZKIMypeivEY8QRlir4ggrBWvzysmhVDevMqN3WivWrLI48OALHoAQscA7q4AY0QBNg8AhewTv40J60N+1T+5qN5rTMcwj+lPb9A+I6qcA=</latexit>

f(X) = f(X(1), ..., X(p)) = �1X
(1) + �2X

(2) + ...+ �pX
(p)

<latexit sha1_base64="DAdkiidSfDDX6cmRyjwk0+I37pY=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0lE1ItQ9OKxgm0DbSib7aRdutnE3YlQSv+EFw+KePXvePPfuG1z0NYHA4/3ZpiZF6ZSGHTdb6ewsrq2vlHcLG1t7+zulfcPmibJNIcGT2Si/ZAZkEJBAwVK8FMNLA4ltMLh7dRvPYE2IlEPOEohiFlfiUhwhlbyr6nfCQFZt1xxq+4MdJl4OamQHPVu+avTS3gWg0IumTFtz00xGDONgkuYlDqZgZTxIetD21LFYjDBeHbvhJ5YpUejRNtSSGfq74kxi40ZxaHtjBkOzKI3Ff/z2hlGV8FYqDRDUHy+KMokxYROn6c9oYGjHFnCuBb2VsoHTDOONqKSDcFbfHmZNM+q3kX1/P68UrvJ4yiSI3JMTolHLkmN3JE6aRBOJHkmr+TNeXRenHfnY95acPKZQ/IHzucPTCOPgA==</latexit>

= X�

<latexit sha1_base64="ZNwwj1L0uSFpRpk1L8XpFEC1wfY=">AAACJ3icbVDLSsNAFJ34rPUVdelmsAgtlJBIUTdK0Y3LCn1BmpbJdNoOnTyYmQgl5G/c+CtuBBXRpX/iJM1CWw8MnHvuudy5xw0ZFdI0v7SV1bX1jc3CVnF7Z3dvXz84bIsg4pi0cMAC3nWRIIz6pCWpZKQbcoI8l5GOO71N+50HwgUN/KachcTx0NinI4qRVNJAv+7CK2h3+3HZqiRVaBhGFaZVWEmcKuy5RKLUkJGBlRvmVej0mwO9ZBpmBrhMrJyUQI7GQH/tDQMcecSXmCEhbMsMpRMjLilmJCn2IkFChKdoTGxFfeQR4cTZnQk8VcoQjgKuni9hpv6eiJEnxMxzldNDciIWe6n4X8+O5OjSiakfRpL4eL5oFDEoA5iGBoeUEyzZTBGEOVV/hXiCOMJSRVtUIViLJy+T9plhnRu1+1qpfpPHUQDH4ASUgQUuQB3cgQZoAQwewTN4A+/ak/aifWifc+uKls8cgT/Qvn8AueOhCg==</latexit>

X = [X(1), ..., X(p)],� = [�1, ...,�p]
T



Finding the estimator

• Back to our original equation

• Substitute in our line parameters

• Expand the square

where



Finding the estimator



Normal Equations

• If (ATA) is invertible, this is easily solved!

• When is (ATA) invertible? 
• When A is full rank (recall Linear Algebra Review lectures)



Geometric Interpretation

• fn(A) is the orthogonal projection of Y onto 
the linear subspace spanned by the columns 
of A (aka X)

• (go back and review the Linear Algebra 
notes!)



Normal Equations

• We saw how to solve when (ATA) is invertible
• Unspoken was the assumption that it is also small

• What about when (ATA) is invertible, but very large?
• Gradient descent! J(β) is convex!



Normal Equations

• What about when (ATA) is not invertible?
• Prior + regularization



Non-invertible case

• What kinds of priors?

• Gaussian prior

• Laplace prior

• What’s the difference?



Types of regularization

Ridge regression (L2) Lasso regression (L1)

L1 (Lasso) results 
in sparse 
solutions

Very good for 
high-dimensional 

problems!



Part II: Ensemble Models



Nonlinear decision boundaries

• Sometimes we encounter problems 
that linear models can’t solve



Bias-variance trade-off

• Bias
• E[θ – X]
• Deviation of the estimator from the 

true value on average

• Variance
• E(X2) – E(X)2
• Spread of the data from its average

• As one decreases, the other tends 
to increase
• Low-bias, low-variance is not 

generally possible



Ensemble Models

• Collections of “weak learners”
• Decision Trees -> Random Forests
• Logistic Regression -> Pool of Logistic Regressors
• Naïve Bayes -> Ensemble of Naïve Bayes
• Support Vector Machine -> Ensemble of SVMs

• Each is trained independently on a subset of the training data
• Decisions are made by pooling all the individual models’ predictions

• Instead of learning a single (weak) classifier, learn many (weak) 
classifiers that are good at different parts of the input space



Boosting

• Given a weak learner, run it multiple times on (reweighted) training 
data, then let learned classifiers vote
• On each iteration t:
• weight each training example by how incorrectly it was classified
• learn a weak hypothesis (classifier) ht
• a strength of the hypothesis ɑt

• Final classifier



Boosting example



Boosting example



Part III: xgboost



XGBoost

• eXtreme Gradient Boosting
• 29 Kaggle challenges with 

winners in 2015
• 17 used XGBoost
• 8 of these solely used XGBoost; 

the others combined XGBoost with 
DNNs

• KDDCup 2015
• Every single top 10 finisher used 

XGBoost



XGBoost Applications

• Store sales prediction
• High energy physics event classification
• Web text classification
• Customer behavior prediction
• Motion detection
• Ad click through rate prediction
• Malware classification
• Product categorization
• Hazard risk prediction
• Massive on-line course dropout rate 

prediction



Properties of XGBoost

• Single most important factor in its success: scalability
• Due to several important systems and algorithmic optimizations

1.Highly scalable end-to-end tree boosting system
2.Theoretically justified weighted quantile sketch for efficient proposal 

calculation
3.Novel sparsity-aware algorithm for parallel tree learning
4.Effective cache-aware block structure for out-of-core tree learning



What is “tree boosting”?

• Given a dataset (n 
examples, m features)

• Tree ensemble uses K 
additive functions to 
predict output



What is “gradient boosting”?



Regularized objective function



Split-finding algorithms

• Exact
• Computationally demanding
• Enumerate all possible splits for continuous features

• Approximate
• Algorithm proposes candidate splits according to percentiles of feature 

distributions
• Maps continuous features to buckets split by candidate points
• Aggregates statistics and finds best solution among proposals



Comparison of split-finding

• Two variants
• Global
• Local



Shrinkage and column subsampling

• Shrinkage
• Scales newly added weights by a factor 𝜂
• Reduces influence of each individual tree
• Leaves space for future trees to improve model
• Similar to learning rate in stochastic optimization

• Column subsampling
• Subsample features
• Used in Random Forests
• Prevents overfitting more effectively than row-sampling



Sparsity-aware split finding

• Equates sparsity with 
missing values
• Defines a “default” 

direction: follow the 
observed paths
• Compare to “dense” method



How does this work?

• Features need to be in sorted order to determine splits
• Concept of blocks
• Compressed column (CSC) format
• Each column sorted by corresponding feature value

• Exact greedy algorithm: all the data in a single block
• Data are sorted once before training and used subsequently in this 

format



Feature transformations in blocks



More on blocks

• Data is stored on multiple blocks, and these blocks are stored on disk
• Independent threads pre-fetch specific blocks into memory to 

prevent cache misses
• Block Compression
• Each column is compressed before being written to disk, and decompressed 

on-the-fly when read from disk into a prefetched buffer
• Cuts down on disk I/O

• Block Sharding
• Data is split across multiple disks (i.e. cluster)
• Pre-fetcher is assigned to each disk to read data into memory



Cache-aware access

Exact Greedy Algorithm
• Allocate an internal buffer in 

each thread
• Fetch gradient statistics
• Perform accumulation in mini-

batch
• Reduces runtime overhead 

when number of rows is large

Approximate Algorithms
• Choice of block size is critical
• Small block size results in small 

workloads for each thread
• Large block size results in cache 

misses as gradient statistics do 
not fit in cache



Cache-aware access

Exact Approximate



Results: out of core



Results: distributed



Results: scalability



Demonstration

https://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html 

https://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html


References

• Elements of Statistical Learning, Chapters 3, 9, and 10
• Xgboost: A Scalable Tree Boosting System
• http://arxiv.org/abs/1603.02754

http://arxiv.org/abs/1603.02754




Regularized objective function

Objective

2nd order 
approx.

Remove 
constants

Scoring function to 
evaluate quality of 

tree structure


