Biologically-inspired Computing
[I: Neural Networks

CSCl 4360/6360 Data Science Il



Survey

* Who’s heard of artificial neural networks?
* Who knows what a neuron or synapse is?
* Who knows what an activation function is? Different types?

* Input layers, hidden layers, output layers?

* Who’s heard of deep learning?



Artificial Neural Networks

* Not a new concept!

e Roots as far back as 1940s
work in unsuperivsed
learning

* Took off in 1980s and 1990s B
* Waned in 2000s

* “Biologically-inspired”
computing
* May or may not be true

 Shift from rule-based to
emergent learning




Artificial Neural Networks

O * Kind-of modeled after biological
dendrites - ’ X1 brains
[ =7 \ * Hence: “artificial”
i | Xy—> —¥i » Neurons: basic unit of thought
cell body {k 1/ and computation
e * Synapses: connections
© ¢ © Booo between neurons
' Y NN N N :
%éﬁ{s 52, 5.0 zzg.“zxg.“zxg ¢ * Activation functions:
/gs%%g A’A’A "~ determine whether or not a
A o1 neuron “fires”, given firings (or
synapse synapses not) of previous connected

neurons



Artificial Neural Networks

* ANNs organized oG

into layers O

e Each layeris a
collection of Deirdrites
neurons

Middle Layer

—— Q Output Layer

* Each neuron has an
activation function  synapses”
that determines

hether to "fire”
e o "~ ) Neuron scheme O/

 Signal is propagated
to the next layer




Artificial Neural Networks

INPUT LAYER HIDDEN LAYER OUTPUT LAYER
Ai(=123..m) Bj (i =1.2.3...n) Ck (k=12.3....0)
' * Types of layers
* Input
* Output
* Hidden
e .» * Types of activation functions
....... i o Identity
d e * Step (threshold)
""" 1 * Linear
) e * tanh
tput * sigmoid
'[’I:jp: Al * Rectified Linear (ReLU)
' * https://en.wikipedia.org/wiki/Activa
tion function#Comparison of activ
ation functions



https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function

Activation Functions

* Might be among the single most important architectural decisions
to be made, if not the most important

* Nonlinear: two-layer ANN can be proven to be a universal function
approximator

* Continuously differentiable: essential to gradient-based training of
the ANN (which we use in backpropagation)

* Range: gradient-based methods are more stable when range of
activation function is finite (i.e., tanh is [-1, 1])



Single Neuron

* [nput neurons

* Each incoming value
from previous layer
has a weight

* Weighted sum in
neuron

e Activation function
with a threshold

e OQutput from neuron
sent to next layer




Single Neuron

* Neuron pre-activation (or input activation):

a(x)=b+ > wx;=b+w'x

* Neuron (output) activation

h(x) = g(a(x)) = g(b+ >_; wiz:)

* W are the connection weights
» b is the neuron bias

- g() Is called the activation function



“Emergent behavior” perspective

* ANNs embody the principle of “emergent
behavior”: from relatively simple
structure and rules comes remarkably
complex phenomena

* Intelligence and intelligent life

* Relationship to ANNs

* No central network processor

* “Knowledge” is stored in the network itself
(weights)

* “Hierarchies” of concepts in deep networks



“Emergent behavior” perspective

e Also called “connectionist” models

* Humans
* Neuron switching time: ~0.001s Upshot: ANN-based artificial
e Number of neurons: ~1010 intelligence isn’t going to

emerge anytime soon

Connections per neuron: ~10%-10°
Scene recognition time: ~0.1s
Significant parallel computation

* ANNSs
* Neuron-like switching units (usually ~10%)
* Weighted interconnections among units (usually 102-103)
* Some parallel computation (limited by hardware, networks, etc)




Logistic Regression

* Remember logistic regression?

* Functional form of classifier

logit (z)

* Logit function applied to a
weighted linear combination of
the data




Logistic Regression

* LR is a linear classifier

0
P(Y =0|X) = P(Y = 1]|X)
1

0
1

(




LR as a Graph

* Define output o(x) =

Sigmoid Unit
net ZIEOW,' X o = G(net) = l-ner
|l +e




Properties of ANNSs

* ANNs learnsome f: X2 Y
* X and Y can be continuous / discrete variables

* Focus on feed-forward neural networks
* Form directed acyclic graphs, or DAGs
* Will break this focus when we reach recurrent neural networks!




ANN In practice

 Learn to differentiate homonyms using frequencies in audio

4000

a head
a hid

+ hod

x had

¢ hawed
v heard
o heed
< hud

» who'd
~ hood

head hid A who'd hood

1000 1400




Deep Learning

* Really a reformulation of neural networks to be “deep”

 Original conception called for multilayer neural networks (“multilayer
perceptrons”)

* Ran into numerous problems:
* Theoretical (how to optimize over parameters of deep networks?)

* Empirical (gradients vanish / explode over deep networks)
* Engineering (hardware isn’t capable of training deep networks)



Why is “deep learning” a thing?

e Concepts have been around for decades

* 1950s: didn’t have backpropagation theory to efficiently train
perceptrons of more than 1 layer

» 1980s: didn’t have hardware to efficiently compute gradients for
more than 2-3 hidden layers

e 1990s: didn’t have enough data to make deep learning feasible

e 2000s: too depressed with previous failures to look into neural
networks; pursued e.g. SVMs instead

* 2010s: DEEPLY LEARN ALL THE THINGS




Deep Learning Catalysts

 Scaling of data
and computation

* Data
* "Big data”

 Computation
* Specialized
hardware

* Open source
frameworks

 Algorithms

e Efficient
implementations

* New paradigms

Scale drives deep learning progress

-

Performance

—————————————————

/T

Amount of data




Deep Learning Catalysts

e Switching from sigmoid to RelLU activation functions

Sigmoid RelLU

I I I [ I I I I I
1.0 = e N c ' '

' saturated: - linear - saturated !
I S T RS PP S TTERE P e

* Sigmoid becomes “saturated” at tails, resulting in very slow learning
progress



Deep Learning Catalysts

* Hardware efficiency (i.e. Moore’s

Law) [dea

e Faster prototyping of
* New ANN architectures
* New datasets
* New activation functions

* Practitioners and researchers Experiment Code
benefit



TensorFlow Playground

* Observe the process ANN training (concentric circles dataset)

e 2 inputs, 1 hidden layer (4 neurons), Sigmoid activation, L1
regularization

e 2 inputs, 1 hidden layer (4 neurons), ReLU activation, L1
regularization

* 4 inputs, 0 hidden layers, ReLU activation, L1 regularization

* How many training epochs are needed?
* What are the weights?



Deep Learning: Caveats

1.

2

3.

10.

11

You Forgot to Normalize Your Data

. You Forgot to Check your Results

You Forgot to Preprocess Your Data

. You Forgot to use any Regularization

. You Used a too Large Batch Size

. You Used an Incorrect Learning Rate

. You Used the Wrong Activation Function on the Final Layer

. Your Network contains Bad Gradients

. You Initialized your Network Weights Incorrectly

You Used a Network that was too Deep

You Used the Wrong Number of Hidden Units




Deep Learning: More caveats

1.0

* (along the lines of “don’t .
use Hadoop if your data
isn’t that big”)

* At smaller data sizes, no

0.9

0.8

Accuracy

discernible performance

0.7

bump from deep learning ) — Depleaming
versus “traditional” °
methods o | | |
* "Traditional” methods 20 40 60
likely more interpretable Training Set Sample Size

and simpler to use



Deep Learning: Even more caveats

* Fizz Buzz (the classic interview question)

“Print numbers 1 through 100, except:
if the number is divisible by 3 print

‘fizz’; if it’s divisible by 5 print ‘buzz’; if

it’s divisible by 15 print ‘fizzbuzz'.

e ...in Tensorflow!



interviewer: OK, so | need you to print the numbers from 1 to 100, except that if the number
is divisible by 3 print "fizz’, if it's divisible by 5 print "buzz",and if it's divisible by 15 print
"fizzbuzz".

me: I'm familiar with it.

interviewer: Great, we find that candidates who can't get this right don't do well here.
me: ...

interviewer: Here's a marker and an eraser.

me: [thinks for a couple of minutes]

interviewer: Do you need help getting started?

me: No, no, I'm good. So let’s start with some standard imports:

import numpy as np
import tensorflow as tf

interviewer: Um, you understand the problem is fizzbuzz, right?



me: Now we need to set up our model in tensorflow. Off the top of my head I'm not sure how
many hidden units to use, maybe 107?

interviewer: ...

me: Yeah, possibly 100 is better. We can always change it later.
|NUM_HIDDEN = 100
We'll need an input variable with width NUM_DIGITS, and an output variable with width 4:

tf.placeholder("float", [None, NUM_DIGITS])
tf.placeholder("float", [None, 4])

interviewer: How far are you intending to take this?

me: Oh, just two layers deep -- one hidden layer and one output layer. Let's use randomly-
initialized weights for our neurons:

def init_weights(shape):
return tf.variable(tf.random_normal(shape, stddev=0.01))

init_weights([NUM_DIGITS, NUM_HIDDEN])
init_weights([NUM_HIDDEN, 4])




So each training pass looks like

for start in range(©@, len(trX), BATCH_SIZE):
end = start + BATCH_SIZE
sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]})

and then we can print the accuracy on the training data, since why not?

print(epoch, np.mean(np.argmax(trY, axis=1) ==
sess.run(predict_op, feed_dict={X: trX, Y: trY})))

interviewer: Are you serious?

me: Yeah, | find it helpful to see how the training accuracy evolves.

interviewer: ...




And then our output is just our fizz_buzz function applied to the model output:

teY = sess.run(predict_op, feed_dict={X: teX})
output = np.vectorize(fizz_buzz)(numbers, teY)

print(output)

interviewer: ...

me: And that should be your fizz buzz!

interviewer: Really, that's enough. We'll be in touch.
me: In touch, that sounds promising.

interviewer: ...



Postscript

| didn't get the job. So | tried actually running this (code on GitHub), and it turned out it got
some of the outputs wrong! Thanks a lot, machine learning!

In [185]: output

Out[185]:

array(['1', '2' izz', '4', 'buzz', 'fizz', '7', '8', 'fizz', 'buzz',
11, "13', '14', 'fizzbuzz', '16', '17', 'fizz', '19',
"buzz' ‘22", "2 fizz', 'buzz', '26', 'fizz', '28', '29',
"fizzb 1, 'f izz', '34', 'buzz', 'fizz', '37', '38',
"fizz', e , 41 '43', '44', 'fizzbuzz', '46', '47',
‘fizz', '49', 'buzz' , '52', 'fizz', 'fizz', 'buzz', '56',

‘fizz', '58', '59', 'T puzz', '61', '62', 'fizz', '64', 'buzz’,
‘fizz', '67', '68', '69', 'buzz', '71', 'fizz', '73', '74',
‘fizzbuzz', '76', '77', 'fizz', '79', 'buzz', '81', '82', '83',
‘84', 'buzz', '86', '87', '88', '89', 'fizzbuzz', '91', '92', '93',
'94', 'buzz', 'fizz', '97', '98', 'fizz', 'fizz'l],

dtype='<U8")

| guess maybe | should have used a deeper network.




Questions?

\
\

 WEMUST GO DEEPER




Course Details

* Homework 4 due tonight!
* Homework 5 (the final homework!) comes out Thursday

* Final Project Update #1 is due tonight
* 1 page (absolute MAX)
* Tell me what you’ve done since you submitted the proposal two weeks ago



References

* “Why is Deep Learning Taking Off?”
https://www.coursera.org/learn/neural-networks-deep-
learning/lecture/praGm/why-is-deep-learning-taking-off

* TensorFlow Playground http://playground.tensorflow.org/

* “My neural network isn’t working! What should | do?”
http://theorangeduck.com/page/neural-network-not-working

* “Don’t use deep learning, your data isn’t that big”
https://simplystatistics.org/2017/05/31/deeplearning-vs-leekasso/

* “Fizz Buzz in Tensorflow” http://joelgrus.com/2016/05/23/fizz-
buzz-in-tensorflow/



https://www.coursera.org/learn/neural-networks-deep-learning/lecture/praGm/why-is-deep-learning-taking-off
https://www.coursera.org/learn/neural-networks-deep-learning/lecture/praGm/why-is-deep-learning-taking-off
http://playground.tensorflow.org/
http://theorangeduck.com/page/neural-network-not-working
https://simplystatistics.org/2017/05/31/deeplearning-vs-leekasso/
http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/
http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/

