Biologically-Inspired Computing I: Optimization

CSCI 4360/6360 Data Science II

What is Optimization?

$$\theta^* \in \arg\min_{\theta \in \Theta} \mathcal{L}(\theta)$$

- Formal: "Find a specific value of theta for which L is minimized"
- Colloquial: "Give me the parameters that result in the function's minimum"

Tried and true

- Where do we start?
- Partial derivative
- Set partial to zero
- Solve for the minimum

 $rac{\partial}{\partial a_1}f(a_1,a_2)$

• Why doesn't this work in modern ML? (even logistic regression!)

Automatic Differentiation

- Aka, "autodiff"
- Core to TensorFlow, Keras, PyTorch

AUTOMATIC DIFFERENTIATION WITH TORCH.AUTOGRAD

- Requires a computational graph
 - Computes gradients during backpropagation

Stochastic Differentiation

• aka, Stochastic Gradient Descent (SGD)!

$\mathbb{E}[\boldsymbol{g}_t] = abla_{\boldsymbol{ heta}} \mathcal{L}(\boldsymbol{ heta})|_{\boldsymbol{ heta}_t}$

- The source of noise in this case: the data (or lack thereof)
 - Partials w.r.t. a sample, or even a single data point
- Other versions to reduce the noise
 - Preconditioned SGD
 - Variance reduction

What do all these methods require?

- Plenty of other optimization strategies along these lines
- One thing they all share: require derivatives
 - Requires the function we're optimizing L to have an explicit or known form
 - Requires evaluation of the derivative to be fairly inexpensive
- Are there alternatives? Yes

Derivative-free Optimization (DFO)

- Hill-climbing
- Stochastic local search
- Random search
- Optimal transport (e.g., Wasserstein)

• Today

- Simulated Annealing
- Evolutionary Algorithms
- Particle Swarm

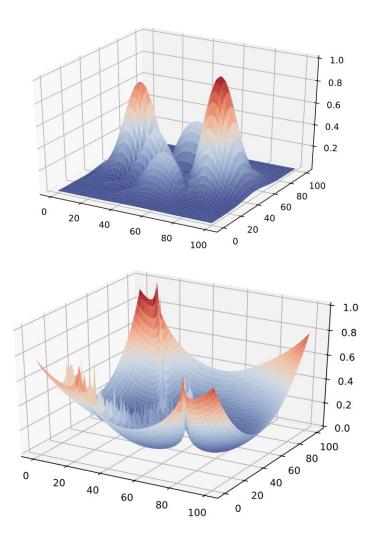
- Physical process of heating a solid until thermal stresses are released, then cooling it (very slowly) until crystals are perfectly arranged
 - Corresponds to a minimum energy state
- Define an energy function

$$p_T(\boldsymbol{x}) = \exp(-\mathcal{E}(\boldsymbol{x})/T)$$

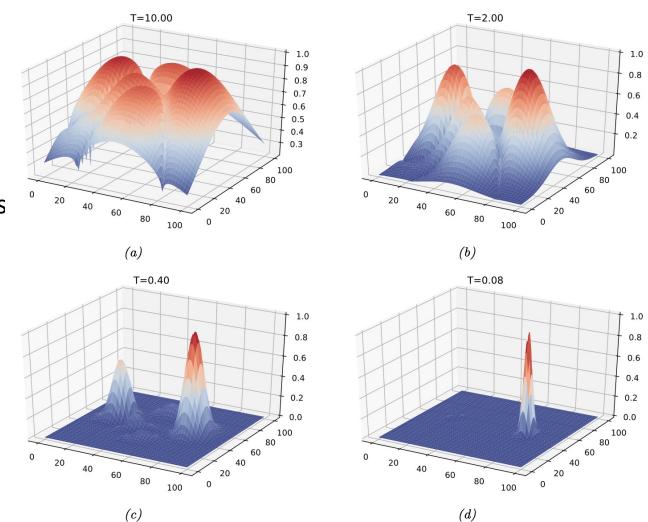
• Temperature *T* is slowly decreased over time

• A function we want to optimize

• Its corresponding energy function



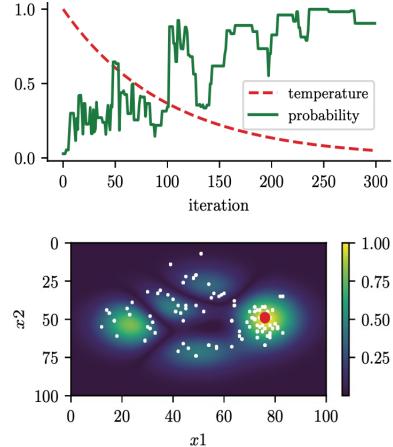
- Annealed versions of the energy function at different temperatures
 - T >>> 1, energy landscape is flatter
 - As T -> 0, landscape becomes sharper, highlighting highprobability global extrema



(d)

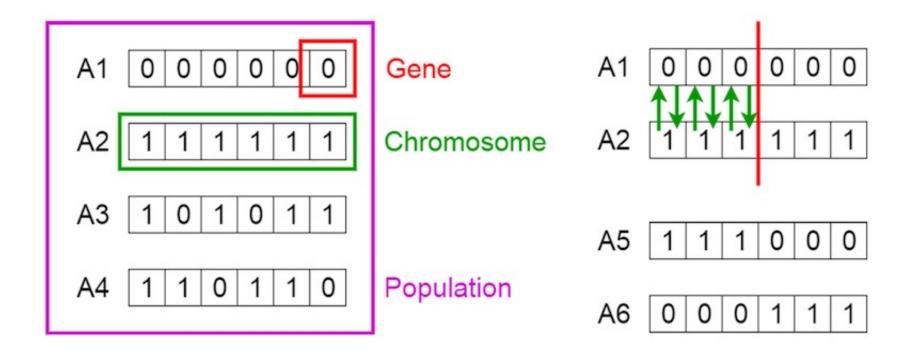
• The longer the experiment, the more confident the annealing will be

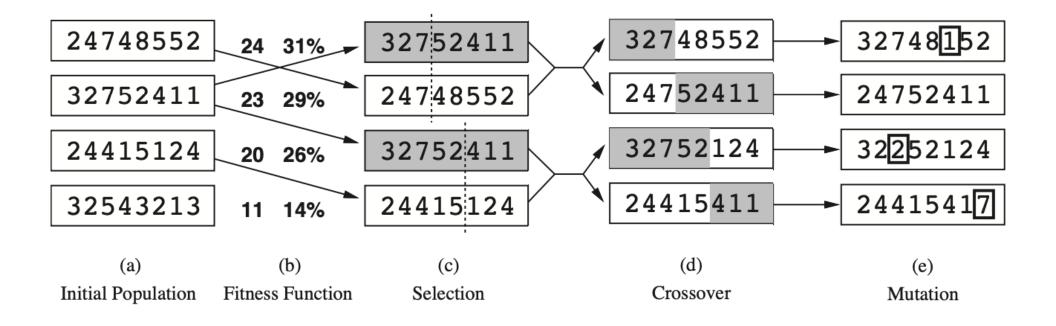
- (Theoretically) Guaranteed to final global optimum
 - Run long enough
 - Good cooling schedule
 - etc

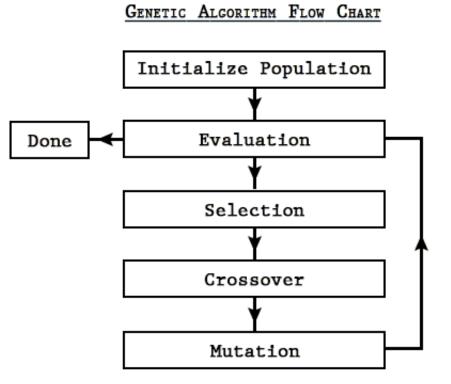


Evolutionary Algorithms (EA)

- Annealing = (technically) guaranteed to find global optimum
- EA = (technically) NOT guaranteed to find global optimum
- Lots of caveats, on both
- EA is a form of "stochastic local search"
 - Balance exploitation (local search) and exploration (global search)
 - Can find you a good local optimum quickly, with good chance of global optimum in a reasonable time frame







- One way to conceptualize EAs/GAs: search!
- Goal: find an optimal (or nearly-optimal) parameter combination *without* having to evaluate all possible parameter values
- GA trade-offs exploration vs exploitation through population size, number of generations, cross-over, mutation

Particle Swarm Optimization (PSO)

- The inspiration comes from watching large swarms of birds or schools of fish moving somewhat in unison, but with a few members taking some unexpected deviations.
- A single particle in PSO compares well to a single individual in EA

PSO: Exploration vs Exploitation

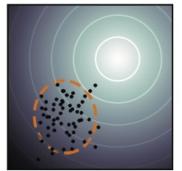
- *Exploration*: breadth over depth
 - Trying out a large range of values quickly
 - "Building an intuition" phase
- Exploitation: depth over breadth
 - Zeroing in on a high-probability area
 - "Deep dive" phase
- Pretty much every optimization strategy involves some trade-off between these two
 - If you notice your optimization procedure starting fast and then slowing down, it's shifting from exploration into exploitation

Particle Swarm Optimization

- Like EA, you have a population of particles
- Unlike EA, these particles remain the same
 - Each particle tracks its own search progress
 - Some global parameters to track
 - Hyperparameters modulating the exploration/exploitation trade-off
- Some stochasticity (analogous to mutation) to prevent getting stuck
- Simulate

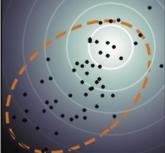
Particle Swarm Optimization

Generation 1

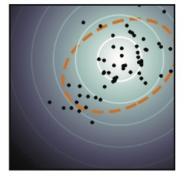


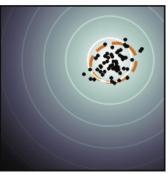
Generation 4

Generation 2

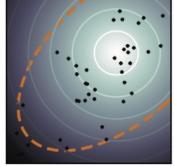


Generation 5

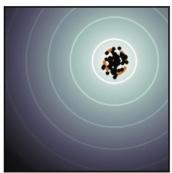




Generation 3



Generation 6



Advantages of Derivative-free methods

- Can optimize pretty much anything
 - No need for a known or closed form derivative ("black box optimization")
 - Just need some way of evaluating whether or not a specific guess is "good" (e.g., a fitness function)
- Straightforward to implement
 - You implemented part of PSO in the midterm, EA in HW4 $\ensuremath{\textcircled{\odot}}$
 - Compare to your HW1 implementation of gradient descent
- Only real constraint (usually) is time
 - Fairly resource-light, can scale up to use available resources

Disadvantages of Derivative-free methods

- Often no convergence guarantees
 - EA is guaranteed to find a local optimum
 - Annealing is *theoretically* guaranteed to find a global optimum (but could be waiting until the heat death of the universe)
- Relies heavily on hand-tuned hyperparameters
 - Temperature protocol, mutation rate, cognitive / social parameters
- "Long tail" convergence
 - Can usually find a decent solution quickly, but optimal solutions may take a very long time

Stay tuned

• More biologically inspired computing methods: **neural networks!**

References

- "Probabilistic Machine Learning", by Kevin Murphy <u>https://probml.github.io/pml-book/</u>
 - Book 2: "Probabilistic Machine Learning: Advanced Topics", ch. 6

Quick Notes

- Still finishing HW3 and Midterm grades
 - Aiming to have these on eLC tomorrow
- All workshop presentations and final project proposals are on eLC!
 - Double-check to make sure you have the grade you expect
- Final Project Update #1 is due TUESDAY, Oct 31
- Homework 4 is due TUESDAY, Oct 31

