CSCI 4360/6360 Data Science II

The Neural Network Zoo

 <u>http://www.asimovinstitute.org</u> /neural-network-zoo/

Modeling Sequences • Input: • Output: $X = [\vec{x}_1, \vec{x}_2, ..., \vec{x}_T] \qquad Y = [\vec{y}_1, \vec{y}_2, ..., \vec{y}_N]$ T and N not necessarily equal Dimensions of X and Y not necessarily equal Weather and Climate Automated Driving Other "long-distance" time series data Language Translation Forecasting

Something we've seen before

Linear Dynamical Models

• Two main components (using notation from Hyndman 2006):

Appearance
$$y_t = Cx_t + u_t$$

Model $x_t = Ax_{t-1} + Wv_t$

Autoregressive Models

• This is the definition of a 1st-order autoregressive (AR) process!

$$x_t = Ax_{t-1} + Wv_t$$

- Each observation (x_t) is a function of previous observations, plus some noise
- Markov model!

Autoregressive Models

- AR models can have higher orders than 1
- Each observation is dependent on the previous *d* observations

$$x_t = A_1 x_{t-1} + A_2 x_{t-2} + \dots + A_d x_{t-d} + W v_t$$

Autoregressive Models

- Concrete, a priori definition of what is important
 - nth-order Markov process
 - n+1 terms and larger are explicitly ignored
- No concept of attention
 - All *n* terms receive equal "attention" (computationally, if not also statistically)
 - Are you devoting equal time reading every word on this slide?
- Cannot handle variable-length inputs, nor variable-length outputs
 - Contrast with CNNs: all input images have to be the same size (usually)
 - Contrast with [insert deep network of choice]: all outputs are the same, given any input

Attention

• Some things are more important than others

Diagram derived from Fig. 3 of Bahdanau, et al. 2014

- In short, recurrent neural networks (RNNs) break the typical "directed acyclic" pedagogy of deep networks by introducing self-loops
 - Allows information to persist through multiple iterations
- We can get around problems introduced by loops by "unrolling" the loops
 - This permits backprop to work as usual

• "List" structure intrinsically handles variable-length data

• Think: convolution, but over time instead of space

- Use the same "parameter sharing" as CNNs
 - And linear dynamical systems!

- *f* maps each time point to the next
- Also updates internal state h

• Four main equations at each time point

- RNNs are great for modeling sequences, but by themselves cannot capture *attention*
- Long-term dependencies require an explicit "memory"

Long-term Dependencies

- RNNs compose the same activation function repeatedly
 - Think: recurrence relations
- Results in highly nonlinear behavior

Long-term Dependencies

• Put another way, recall the internal state update:

$$\vec{h}^{(t)} = W^T \vec{h}^{(t-1)}$$

• Where have we seen this before...

$$\vec{h}^{(t)} = (W^t)^T \vec{h}^{(0)} \qquad W = X\Lambda X^T$$
$$\vec{h}^{(t)} = X^T \Lambda^t X \vec{h}^{(0)}$$

- Eigenvalues are raised to the power *t*, decaying any eigenvalue < 1
- Any component of h⁽⁰⁾ not aligned with largest eigenvalue will be discarded

Long-term Dependencies

• "I grew up in France... I speak fluent **French**."

Long-Short Term Memory

- Or "LSTM"
- A variant of the gated RNN
- Each hidden state comprises a forget gate
 - Determines what to "remember" and what to discard
 - Functions on self-loop input

LSTM versus "vanilla" RNN

- A "vanilla" RNN contains only a single activation
- LSTMs have four interacting layers in each step

Encoder-Decoder Networks

- Maps input to output sequences
 - Each mapping not necessarily of equal length!
- *C* is a "semantic summary"
 - Think: input "subspace"
- Have to ensure *C* is of sufficient dimensionality to represent input space

Deep Recurrent Networks

- Each recurrent state can feed into a series of hidden states
- Analogous to hidden markov models (HMMs) with attention and nearly infinite support for hidden states

Conclusions

- Recurrent neural networks
 - A generalization of convolution (or is a convolution a generalization of recurrence?): uses same **parameter-sharing** idea
 - Introduces self-loops, but over discrete intervals: loops can be "unrolled" so backpropagation can still be used as normal
 - Still have trouble with long-term dependencies, such as language translation (vanishing / exploding gradient)
- Long-short term memory
 - Introduce a series of gates within the self-loops
 - Gates determine what to remember, what to discard
 - No ill-conditioned gradients
- Attention + Encoder-Decoder Networks
 - Starting to see the foundations for modern Transformers

References

- Deep Learning Book, Chapter 10: "Sequence Modeling: Recurrent and Recursive Nets", <u>http://www.deeplearningbook.org/contents/rnn.html</u>
- "Attention and Augmented Recurrent Neural Networks", <u>https://distill.pub/2016/augmented-rnns/</u>
- "Understanding LSTM Networks" <u>https://colah.github.io/posts/2015-</u> <u>08-Understanding-LSTMs/</u>
- "The Unreasonable Effectiveness of Recurrent Neural Networks" <u>https://karpathy.github.io/2015/05/21/rnn-effectiveness/</u>