
Transformers
CSCI 4360/6360 Data Science II



The Neural Network Zoo

• http://www.asimovinstitute.org
/neural-network-zoo/

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/


The Neural Network Zoo

• http://www.asimovinstitute.org
/neural-network-zoo/

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/


The Neural Network Zoo

• http://www.asimovinstitute.org
/neural-network-zoo/

Today

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/


Transformers

• A confluence of multiple 
technologies and theories

Encoder-Decoder
Networks

Parallelization

Attention



RNNs revisited

• Recurrences
• Input + hidden state
• LSTM “forget” gate
• Encoder-decoder

• Sequential architecture 
precludes parallelization
• Lot of information 

crammed into ht

• “Catastrophic forgetting”



Transformers

• Transductive model
• Relies entirely on self-

attention mechanisms
• No sequence-aligned 

RNNs or convolutions



Transformer architecture

• Encoder
• Maps input sequence (x1,...,xn) to a 

representation sequence (z1,…,zn)
• Decoder

• From sequence z, generates output sequence 
(y1,…,ym)

• Model is autoregressive
• Stacked self-attention and point-wise fully 

connected layers
• Positional encodings allow for fully 

parallelized encodings



Attention

• Maps:
• A query
• A set of key-value pairs

• Query, Key, Value

• An output
• Weighted sum of values
• Weight assigned to each value is output of 

a “compatibility function” of query with 
corresponding key

• Vectors (in theory)
• Matrices in practice (i.e., many 

queries/keys/values in parallel)



Attention

• In 2017 paper, Attention = 
“Scaled Dot-Product Attention”
• Multi-head attention

• Linearly project Q, K, and V h
times with different learned 
projections

• Attention performed in parallel 
on each projection

• Concatenated to compute final 
attention values



Attention and Self-Attention

• Encoder-decoder attention layers
• Q from previous decoder layer
• K, V from output of encoder
• Every position in the decoder can attend to all input positions

• Encoder contains self-attention layers
• Q, K, V all come from the same place (output of previous encoder layer)
• Each position in encoder can attend to all positions in previous encoder layer

• Decoder contains self-attention layers
• Each position in decoder can attend to all positions in previous decoder layer 

up to and including the current position (but not past it!)



Connections to Support Vector Machines

• SVMs were all the rage in the late 90s and early 2000s
• Neural networks had been a “dead end” since early 90s

• 1-layer self-attention Transformers = hard-margin SVM
• Multilayer transformers = hierarchy of SVMs



Let’s add some pictures

• Courtesy of The Illustrated Transformer

















What about the decoder?

• Final K, V from encoder sent 
to each decoder
• Each decoder focuses its 

attention on “correct” 
positions of encoder



Vision Transformers (ViT)

• Built on the same principles
• Patches = tokens

• Still have positional encodings
• Are still embedded in the first 

encoder step

• Attention = dictionary lookup
• dictionary[query] = value
• If key==query, return value
• “Soft” selection

• Everything else is the same!



Transformer limitation

• Attention mechanism is still O(n2)
• Each token compared to each other token
• Subquadratic methods exist but rely on low-rank / sparse approximations, 

and require dense Attention layers
• Ultimately limits the possible sequence length n (context window)



Hyena

• Subquadratic drop-in Attention replacement
• Hyena operator

• Long convolutions
• filter sizes as long as the input

• Data-controlled gating (element-wise multiplication)
• Convolutions in FFT (i.e., frequency) space are element-wise multiplications!



Conclusions

• Transformer architecture for modeling sequences (of text or images)
• Throws out recurrences of RNNs for more parallel training
• Ditching recurrences also allows for arbitrary context windows

• Still use the encoder-decoder architecture
• Input embeddings are critical to the overall performance

• Attention
• Transformer allows for all tokens to “attend” to all other tokens
• Can model extremely long-distance dependencies (spatially or sequentially)
• Only drawback is quadratic computation time

• Hyena operator
• Clever use of FFT-based convolutions and Toeplitz matrices to accelerate 

standard computations and produce subquadratic performance



Up next

• Homework 5 is due next Tuesday!
• Also next Tuesday: the final lecture of the semester—Generative AI!

• 🦃 Thanksgiving Holiday 🦃

• Monday, Tuesday, Thursday, & Monday: Final Project Presentations
• Specific team presentations times are randomized & determined each day!
• Presentations are 12 minutes, with 3 minutes for questions
• If you need an a priori assigned time slot, DM me about it
• Please come support your classmates even after you have presented



References

• “Attention is All You Need”, https://arxiv.org/abs/1406.6909
• Mechanics of seq2seq with Attention 

https://jalammar.github.io/visualizing-neural-machine-translation-
mechanics-of-seq2seq-models-with-attention/
• The Illustrated Transformer https://jalammar.github.io/illustrated-

transformer/
• An Intuitive Introduction to the Vision Transformer 

https://sthalles.github.io/an-intuitive-introduction-to-the-vision-
transformer/
• Transformers as support vector machines. 

https://arxiv.org/pdf/2308.16898.pdf
• Hyena Hierarchy: Towards Larger Convolutional Language Models 

https://arxiv.org/abs/2302.10866

https://arxiv.org/abs/1406.6909
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://sthalles.github.io/an-intuitive-introduction-to-the-vision-transformer/
https://sthalles.github.io/an-intuitive-introduction-to-the-vision-transformer/
https://arxiv.org/pdf/2308.16898.pdf
https://arxiv.org/abs/2302.10866

