
Autoencoders
CSCI 4360/6360 Data Science II

The Neural Network Zoo

• http://www.asimovinstitute.org
/neural-network-zoo/

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/

The Neural Network Zoo

• http://www.asimovinstitute.org
/neural-network-zoo/

Today

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/

Dimensionality Reduction

• Reduce the number of random variables under consideration
• Reduce computational cost of downstream analysis
• Remove sources of noise in the data
• Define an embedding of the data
• Elucidate the manifold of the data

• We’ve covered several strategies so far

Principal Component Analysis (PCA)

1. Orthogonal projection of data
2. Lower-dimensional linear space known as the principal subspace
3. Variance of the projected data is maximized

Two definitions of PCA

Maximizing Variance Minimizing Reconstruction Error

Kernel PCA

• In kernel PCA, we consider data that have already undergone a
nonlinear transformation:

• We now perform PCA on this new M-dimensional feature space

Sparse PCA

• We still want to maximize ui
TSui, subject to ui

Tui = 1
• …and one more constraint: we want to minimize ||ui||1

• Formalize these constraints using Lagrangian multipliers

Stochastic SVD (SSVD)

• Uses random projections to find close approximation to SVD
• Combination of probabilistic strategies to maximize convergence

likelihood
• Easily scalable to massive linear systems

Dictionary Learning

• This gives the minimization

where h promotes sparsity in the coefficients, and B is chosen from
a constraint set
• The general dictionary learning problem then follows

where specific choices of h and g are what differentiate the
different kinds of dictionary learning (e.g. hierarchical, K-SVD, etc)

Autoencoders

• ”Self encode”
• ANNs with output = input

• Identical to the LSTM’s
encoder-decoder architecture

Autoencoders

• Learn a “non-trivial” identity
function
• Low-dimensional “code”

• No other assumptions

• PCA: maximize variance /
minimize reconstruction
• Linearly independent
• Gaussian

• Dictionary Learning: sparse code
/ minimize reconstruction
• Nonlinear

• Kernel / Sparse PCA
+ -

• Very compact
representation

• No strong a priori
form (flexible)

• Difficult to interpret
• Prone to ”collapse”

Autoencoders

• Key point: autoencoders should be undercomplete
• Code dimension < input dimension

• L is some loss function penalizing g(f(x)) for being dissimilar from x
• If f and g are linear, and L is mean squared error, undercomplete AE

learns to span the same subspace as PCA

Sparse Autoencoders

• g(h) is decoder output
• h = f(x), encoder output
• Ω is sparsity penalty

• Note on regularizer

No straightforward
Bayesian interpretation

of regularizer

“Typical” penalties can
be viewed as a MAP

approximation to
Bayesian inference,
with regularizers as

priors over parameters

Regularized MAP then
maximizes:

But autoencoder
regularization relies only

on the data. It’s more of a
“preference over

functions” than a prior.

Denoising Autoencoders

• Instead of learning

• Learn

where !𝑥 is a corrupted version of 𝑥
• Forces the autoencoder to learn the structure of pdata(x)
• Form of “stochastic encoder / decoder”

Denoising Autoencoders

• No longer deterministic!
• Given a hidden code h, minimize − log 𝑝!"#$!"%(𝑥|ℎ)

Denoising Autoencoders

• Generalize encoding function to encoding
distribution

• Same with the decoding distribution

• Together, these comprise a stochastic
encoder and decoder

Denoising Autoencoders

• Define a corruption process, C

• Autoencoder learns a reconstruction
distribution 𝑝%"#$&'(%)#(𝑥	 !𝑥)

1. Sample a training example x
2. Sample a corrupted version !𝑥 from C
3. Use (𝑥, !𝑥) as a training pair

Denoising Autoencoders

• Optimize

• Easy choice of C

Sample from training
set and compute

expectation

Expectation over
corrupted examples

…with respect to learning the
uncorrupted data from the

encoded corrupted data

Denoising Autoencoders

• DAEs train to map !𝑥
back to uncorrupted x
• Gray circle =

equiprobable C
• Vector from !𝑥 points

approximately to
nearest x on manifold
• DFA learns a vector

field around a
manifold

Embeddings

• Manifolds would seem to imply representation learning beyond a
simple low-dimensional code

• Autoencoders can learn
powerful relationships in this
regard
• Pose
• Position
• Affine transformations

Generative Models

• Go beyond learning x -> h, instead focused on learning p(x, h)

• Manifold learning with Autoencoders
• Variational Autoencoders (VAEs)
• Deep Belief Networks (DBNs)
• Deep Restricted Boltzmann Machines (DBMs)
• Generative Adversarial Networks (GANs)

• More next week!

Conclusions

• Autoencoders
• Multilayer perceptron (ANN) that is symmetric
• Output = input
• Goal is to learn a non-trivial identity function, or an undercomplete code h

• Sparse Autoencoders
• Include a sparsity constraint on the code

• Denoising Autoencoders
• Learn a mapping to de-corrupt data
• Include a corruption process C
• Equates to a traversal of the data manifold -> generative modeling primer

References

• Deep Learning Book, Chapter 14: “Autoencoders”
http://www.deeplearningbook.org/contents/autoencoders.html
• DL4J documentation, “Denoising Autoencoders”

http://deeplearning.net/tutorial/dA.html

http://www.deeplearningbook.org/contents/autoencoders.html
http://deeplearning.net/tutorial/dA.html

Administrivia

• Read over project updates—they all look great! (no notes)
• Update #2 due on April 10 (1 week from today)

• Final Presentations
• April 22, 23, and 24
• Part of your grade is your attendance—so please come even if you aren’t

presenting!
• 20 minutes to speak (+2 for Q&A after)
• 3-4 slots on April 22 and 24; 2 slots on April 23
• Sign-up is first-come, first-serve: send me a DM with your 1st and 2nd choice

and I’ll try to slot you in

