Convolutional Neural
Networks

CSCl 4360/6360 Data Science Il

The Neural Network Zoo

e http://www.asimovinstitute.org
/neural-network-zoo/

A mostly complete chart of

© Backfed Input Cell N e u ra l N etWO rkS Deep Feed Forward (DFF)

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

@ Noisynputcell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)
@ tiddenceu 3 A >
@ rrobabistic Hidden Cell 2 8 8
@ spiking Hidden Cell

@ outputcen

@ Matchinput Output Celt

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
S aa S~ -~

@ recurrentcell
@ emory cell

@ oiferent Memory Cell

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Kernel

© Convolution or Pool

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) ~ Restricted BM (RBM) Deep Belief Network (DBN)

e/ O/ \V,_ Y4
-H-:c:-'

Deep Convolutional Network (DCN) Deconvolutional Network (ON) Deep Convolutional Inverse Graphics Network (DCIGN)
— ~ —

>_< o/o\ >_< /O\o o/o\

X o0 ¢ e ~SoC ~SoC

) 5 &b TS B X

X S @ 8 ¢ ~NoC
a ~NOC) e O

X ~oC 5 2 ~O

v ~ a o ~

Generative Adversarial Network (GAN) Liquid State Machine (LSM) ~Extreme Learning Machine (ELM) ~ Echo State Network (ESN)

SR

Deep Residual Support Vect Neural

SETeSees e coon

Y aYaYay
YAYAYATATAY

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/

The Neural Network Zoo

e http://www.asimovinstitute.org
/neural-network-zoo/

A mostly complete chart of

owwn Neural Networks ...

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

& Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)
@ tiddenceu

@ rrobabistic Hidden Cell 2 8 g>. i g>.

@ spiking Hidden Cell

@ outputcen

@ Matchinput Output Celt

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
o g o g -~

@ recurrentcell
@ emory cell

@ oifferent Memory Cell

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Kernel

© Convolution or Pool

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) ~ Restricted BM (RBM) Deep Belief Network (DBN)

AV __ 74 U/ \V,_ Y4
XCXC AR
ANy \

Deep Convolutional Network (DCN)

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCI(

>_< 0/0< >_< O

X (o0 X 0 o0C

£ \o/ ~ 4 \O o/ Kot
N ~Na ~a

>_< o\ >_< /o O\

rsarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM)

9.9 9.9
% Xd‘)vf‘bf‘bf‘}

Deep Residual Support’ Neural

s L e e

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/

scipy.signal.convolve

C O n VO | u t I O n scipy.signal.convolve(in1, in2, mode="full, method="auto’)
Convolve two N-dimensional arrays.
Convolve in7 and in2, with the output size determined by the mode argument.

Parameters: in1 :array_like

 Basically a fancy way of saying 2o
«" H . . ” Second input. Should have the same number of dimensions as inT.
m u |t| pl |Cat I O n mode : str {'full’, valid’, 'same’}, optional

A string indicating the size of the output:

* Originally devised to make non-

differentiable signals L Original pulse
differentiable
0 1 1 T | 1
¢ KDE iS related tO COhVO|uti0n Filter impulse response

14
* For an input function fand /\
convolutional filter g: ' ' ' ' '

Filtered signal
1 - m
0

| | T 1
0 50 100 150 200 250

0 response submitted

What is the infinite verb form of "convolution"?

convolve convolute convolutionize convolvar

8|

Convolution

* Can be viewed as an
integral transform

* One of the signals is
shifted

I I T T T T I I I
| [R LR e :]ﬂnea under f(xait-v)
1] ECHE——— PR PR N A (o)
: : : at-)
{15 K R TR ORI I I
: : ; (f+a)t)
04_.~ S -
o2k P [e T
ol]] i] !]
2 1.5 1 -0.5 0 0.5 1 1.5 2
v &t
I I I 1 1 I T I I I
{feccceeeee. .-.:maunderf(lba'l)-
: : : ; f(x)
; s s z s a0
DSF:eeeeenns (f‘gn)
oLt ! ! L I 1
-1.5 -1 -0.5 0 0.5 1 1.5 2 25 3

Convolution in 2D

e 2D convolutions are critical
In computer vision

=
(=]
=

e Basic idea is still the same
* Choose a kernel
* Run kernel over image

* Build a representation of the
convolved image (likely an
intermediate representation)

* Lots of applications Convolved
Image
Feature

(=]
[y
(=]

=
(=]
=

o| O |0 |0 |F-
= O[O | = | =
=R = =
olr|r|r|lo
OIO|RLR|O|O

Convolution in 2D

 Specific kernels can highlight different image features

Input image Convolution Feature map
Kernel

* This kernel is an edge detector (others can be smoothers,
sharpeners, etc)

Convolution in 2D

* Works basically the same a:
1D

* Filter / kernel computes a
dot product with
underlying pixels

* Generates an output
 Shift kernel and repeat

Source pixel

\=\=\# \ = GO =\ o\
\o\A\= \ RN\ o) =\

\= VAN A\~ o\ o)

AE /CAVAERN

\=\n A= o\~ A\

Convolution filter
(Sobel Gx)

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

/|

Destination pixel

N O

VI R

VRO O T

R

TR

R T

R

Convolution in 2D

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[:,:,0] wO[:,:,0 wll:,:,0] o[:,:,0]
o ofofoJoJo o 1o [[1 10 0 -1-5
. . o 1[tfofz]o o 1|[-1]1 0 0 1 2 2 8
°
Stride dictates how farthe | Lti !’ il C S s
kernel moves after each 00020 e Sedl hid
convolution 020221 A 10 e e
—T 1T o [0 |[1 o 0 -1 -1 2 4 0
. . [:,:, w0 [:,_ +#72 wll:,:,2]
e Padding is used to help o BT BZ L 0 0
101 10 -1
. 0o 2 [to]o}o o
with edge cases S R 7 G L1
NS Bias b0A1x1x1) Bias b1 (1x1x1)
012 0 2 b0 ¢, :,0] b1l:,:,0]
01 2 1 2 0
0 0 0 00

e Pictured: stride of 2,

X[z,
padding of 1 CAICH C 2 Ol
o 2 [T¥]21]2
0 1 1 {0 0
0 2 01 0 2 0
0 0 2 0 2 1 0
0 0 0 2 1 0 0
0 0 0 0 0 0 O

Pooling

e Repeated convolutions can FHHHHHE
generate large intermediate
in pooling unit
Large

feature maps

Large

Large response
in pooling unit
response

in detector

response

. in detector

e “Pooling” is used to reduce it 1 unit 3

dimensionality of feature maps (g |4 (9 5|

while maintaining most
informative features \ T / \ T /

* Mean-pooling, max-pooling LJ ST

* Functions as a regularizer (or an RTINS LS IRVIRS
infinitely-strong prior)

Filters

* Different filter topologies

D=1

D=3
- ﬂw‘ =
88 88
|
S
|

» Captures long-range pixel dependencies
» Very computationally expensive to implement

Convolution

* Key point: parameter sharing

* Images are sparse

* Pixel dependencies
don’t span
arbitrarily large
distances

* Important effects
are local

* Instead of a fully-connected network...
* ...we have one that is more sparsely-connected

Parameter Sharing

FULLY CONNECTED NEURAL NET LOCALLY CONNECTED NEURAL NET

Example: 1000x1000 image
IM hidden units
‘ 10712 parameter:

Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters

- Spatial correlation is local
- Better to put resources elsewhere!

CNNs in Practice

e Stacked
* Convolutions
* Pools
* Activations

* Fully-
connected
classification
layer

_ conv (180w + 5b)

maxpool conv (450w + 10b)

non-linear

S S

(4eeeh

: maxpool
nhon-linear

fully-connected
(1600w + 10b)

non-linear

eeecececececece

¢

\ololNIouilafwlnol =l

CNNs in Practice

e Pattern can be repeated several times

* Still “deep”, but convolutions are the most important part

CNNs in Practice

e Filters are the things that “search” for something in particular in an
image

* To search for many different things, have many different filters

/ %2
Convolution Layer
A A

activation maps

28

w |
o

CNNs in Practice

* Hyperparameters relevant to CNNs:

* Kernel size
e Usually small

 Stride
e Usually 1 (larger for pooling layers)

e Zero padding depth
* Enough to permit convolutional output size to be the same as input size

* Number of convolutional filters
* Number of “patterns” for the network to search for

CNNs in Practice

* 1x1 convolutions are a special case

e Convolve the feature maps, rather
than the pixel maps

* Function as a dimensionality
reduction step (like pooling)
e Can also be used in pooling

CNN Applications: Object Localization

* Two discrete steps:

* Localizing a bounding
box (regression)

* |dentifying the object
(classification)
* Generate “region
proposals”

e Classification
accuracy

>lassification head”

The best result now is Faster RCNN with a resnet 101 layer.

R-CNN Fast R-CNN Faster R-CNN
Test time per 50 seconds 2 seconds 0.2 seconds
image
(with proposals)
(Speedup) 1 25x 250x
mAP (VOC 2007) 66.0 66.9 66.9

CNN Applications: Single-shot Detection

0

* Combines region-proposal
(regression) and object detection
(classification) into a single step ™

* Use deep-level feature maps to
predict class scores and
bounding boxes

200 >

300 Li"\\ . (

* Families of Single-shot detectors: s \

* YOLO (single activation map for
both class and region)
e SSD (different activations)

« R-FCN (like Faster R-CNN) o w0 me w0 w0 0

CNN Applications: Object Segmentation

* Create a map of the detected
object areas

* “Fully-convolutional” networks

 Substitute fully-connected layer
at end for another convolutional
layer

* Activations show object

e Resolution is lost in
upsampling step
 Skip-connections to bring in
some of the “lost” resolution

* EXTREME Segmentation

* Replace upsampling with a
complete deconvolution stack

III

More semantic

CNN Applications: Object Segmentation

* “DeconvNet”: Super-expensive to train

a Dk o~ lemn miama mavcaallaaa

224x224

Convnluttinn netwanrk Decoanvanlutinn netwark
Input image Ground-truth FCN DeconvNet

<56

npooling A

‘ WHpc;ol-mg
e ™

0 response submitted

The parameter sharing / receptive field architecture unique to CNNs enables dramatically reduced parameter counts in neural architec-
tures, exploiting the inherent sparsity of images. What is a disadvantage of this approach?

CNNs have no
notion of absolute
object locality, or of
relative positioning
of multiple objects.

CNNs tend to blur CNNs cannot build CNNs struggle to
object boundaries, up an internal identify objects in
much like optical representation of high-resolution

flow. object hierarchy. images.

22 | R Bar 10of1

Conclusions

* CNNs are mostly “convolutions inside a deep network”
* Main operator (i.e. most important) is the convolution
* Exploits image sparsity: important features are local

* A couple new(ish] tricks include
* Automatically learning the filters as part of the training process
* Using pooling
* 1x1 convolutions

* Applications include
* Object detection (is there an object)
* Object localization and segmentation (where is the object)
* Object classification (what is the object)
» Zero- and single-shot detectors

References

e The Neural Network Zoo
* http://www.asimovinstitute.org/neural-network-zoo/

* Deep Learning Book, Chapter 9: “Convolutional Networks”
* http://www.deeplearningbook.org/contents/convnets.html

e Convolution Arithmetic code (for generating awesome gifs)
* https://github.com/vdumoulin/conv_arithmetic

e 1x1 Convolutions
* https://iamaaditya.github.io/2016/03/one-by-one-convolution/

* Al Gitbook

* https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/

http://www.asimovinstitute.org/neural-network-zoo/
http://www.deeplearningbook.org/contents/convnets.html
https://github.com/vdumoulin/conv_arithmetic
https://iamaaditya.github.io/2016/03/one-by-one-convolution/
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/

