
Convolutional Neural 
Networks

CSCI 4360/6360 Data Science II



The Neural Network Zoo

• http://www.asimovinstitute.org
/neural-network-zoo/

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/


The Neural Network Zoo

• http://www.asimovinstitute.org
/neural-network-zoo/

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/


Convolution

• Basically a fancy way of saying 
“multiplication”
• Originally devised to make non-

differentiable signals 
differentiable
• KDE is related to convolution
• For an input function f and 

convolutional filter g:





Convolution

• Can be viewed as an 
integral transform
• One of the signals is 

shifted



Convolution in 2D

• 2D convolutions are critical 
in computer vision
• Basic idea is still the same

• Choose a kernel
• Run kernel over image
• Build a representation of the 

convolved image (likely an 
intermediate representation)

• Lots of applications



Convolution in 2D

• Specific kernels can highlight different image features

• This kernel is an edge detector (others can be smoothers, 
sharpeners, etc)



Convolution in 2D

• Works basically the same as 
1D

• Filter / kernel computes a 
dot product with 
underlying pixels
• Generates an output
• Shift kernel and repeat



Convolution in 2D

• Stride dictates how far the 
kernel moves after each 
convolution
• Padding is used to help 

with edge cases

• Pictured: stride of 2, 
padding of 1



Pooling

• Repeated convolutions can 
generate large intermediate 
feature maps
• “Pooling” is used to reduce 

dimensionality of feature maps 
while maintaining most 
informative features
• Mean-pooling, max-pooling
• Functions as a regularizer (or an 

infinitely-strong prior)



Filters

• Different filter topologies

• Captures long-range pixel dependencies
• Very computationally expensive to implement



Convolution

• Key point: parameter sharing

• Images are sparse
• Pixel dependencies

don’t span 
arbitrarily large
distances

• Important effects
are local

• Instead of a fully-connected network…
• …we have one that is more sparsely-connected



Parameter Sharing



CNNs in Practice

• Stacked
• Convolutions
• Pools
• Activations

• Fully-
connected 
classification 
layer



CNNs in Practice

• Pattern can be repeated several times

• Still “deep”, but convolutions are the most important part



CNNs in Practice

• Filters are the things that “search” for something in particular in an 
image
• To search for many different things, have many different filters



CNNs in Practice

• Hyperparameters relevant to CNNs:

• Kernel size
• Usually small

• Stride
• Usually 1 (larger for pooling layers)

• Zero padding depth
• Enough to permit convolutional output size to be the same as input size

• Number of convolutional filters
• Number of “patterns” for the network to search for



CNNs in Practice

• 1x1 convolutions are a special case

• Convolve the feature maps, rather 
than the pixel maps

• Function as a dimensionality 
reduction step (like pooling)
• Can also be used in pooling



CNN Applications: Object Localization

• Two discrete steps:
• Localizing a bounding 

box (regression)
• Identifying the object 

(classification)

• Generate “region 
proposals”
• Classification 

accuracy



CNN Applications: Single-shot Detection

• Combines region-proposal 
(regression) and object detection 
(classification) into a single step
• Use deep-level feature maps to 

predict class scores and 
bounding boxes
• Families of Single-shot detectors:

• YOLO (single activation map for 
both class and region)

• SSD (different activations)
• R-FCN (like Faster R-CNN)



CNN Applications: Object Segmentation

• Create a map of the detected 
object areas
• “Fully-convolutional” networks

• Substitute fully-connected layer 
at end for another convolutional 
layer

• Activations show object
• Resolution is lost in 

upsampling step
• Skip-connections to bring in 

some of the “lost” resolution
• EXTREME Segmentation

• Replace upsampling with a 
complete deconvolution stack



CNN Applications: Object Segmentation

• “DeconvNet”: Super-expensive to train
• But results are excellent

• Particularly for small objects





Conclusions

• CNNs are mostly “convolutions inside a deep network”
• Main operator (i.e. most important) is the convolution
• Exploits image sparsity: important features are local

• A couple new[ish] tricks include
• Automatically learning the filters as part of the training process
• Using pooling 
• 1x1 convolutions

• Applications include
• Object detection (is there an object)
• Object localization and segmentation (where is the object)
• Object classification (what is the object)
• Zero- and single-shot detectors



References

• The Neural Network Zoo
• http://www.asimovinstitute.org/neural-network-zoo/

• Deep Learning Book, Chapter 9: “Convolutional Networks”
• http://www.deeplearningbook.org/contents/convnets.html

• Convolution Arithmetic code (for generating awesome gifs)
• https://github.com/vdumoulin/conv_arithmetic

• 1x1 Convolutions
• https://iamaaditya.github.io/2016/03/one-by-one-convolution/

• AI Gitbook
• https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/

http://www.asimovinstitute.org/neural-network-zoo/
http://www.deeplearningbook.org/contents/convnets.html
https://github.com/vdumoulin/conv_arithmetic
https://iamaaditya.github.io/2016/03/one-by-one-convolution/
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/

