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The Neural Network Zoo

e http://www.asimovinstitute.org
/neural-network-zoo/
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scipy.signal.convolve

C O n VO | u t I O n scipy.signal.convolve(in1, in2, mode="full, method="auto’)
Convolve two N-dimensional arrays.
Convolve in7 and in2, with the output size determined by the mode argument.

Parameters: in1 :array_like

 Basically a fancy way of saying 2o
«" H . . ” Second input. Should have the same number of dimensions as inT.
m u |t| pl |Cat I O n mode : str {'full’, valid’, 'same’}, optional

A string indicating the size of the output:

* Originally devised to make non-

differentiable signals L Original pulse
differentiable
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0 response submitted

What is the infinite verb form of "convolution"?

convolve convolute convolutionize convolvar
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Convolution

* Can be viewed as an
integral transform

* One of the signals is
shifted
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Convolution in 2D

e 2D convolutions are critical
In computer vision
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e Basic idea is still the same
* Choose a kernel
* Run kernel over image

* Build a representation of the
convolved image (likely an
intermediate representation)

* Lots of applications Convolved
Image
Feature
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Convolution in 2D

 Specific kernels can highlight different image features

Input image Convolution Feature map
Kernel

* This kernel is an edge detector (others can be smoothers,
sharpeners, etc)



Convolution in 2D

* Works basically the same a:
1D

* Filter / kernel computes a
dot product with
underlying pixels

* Generates an output
 Shift kernel and repeat

Source pixel
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Convolution in 2D
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Pooling

e Repeated convolutions can FHHHHHE
generate large intermediate
in pooling unit
Large

feature maps

Large

Large response
in pooling unit
response

in detector

response

. in detector

e “Pooling” is used to reduce it 1 unit 3

dimensionality of feature maps (g |4 (9 5|

while maintaining most
informative features \ T / \ T /

* Mean-pooling, max-pooling LJ ST

* Functions as a regularizer (or an RTINS LS IRVIRS
infinitely-strong prior)



Filters

* Different filter topologies
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» Captures long-range pixel dependencies
» Very computationally expensive to implement




Convolution

* Key point: parameter sharing

* Images are sparse

* Pixel dependencies
don’t span
arbitrarily large
distances

* Important effects
are local

* Instead of a fully-connected network...
* ...we have one that is more sparsely-connected



Parameter Sharing

FULLY CONNECTED NEURAL NET LOCALLY CONNECTED NEURAL NET

Example: 1000x1000 image
IM hidden units
‘ 10712 parameter:

Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters

- Spatial correlation is local
- Better to put resources elsewhere!




CNNs in Practice

e Stacked
* Convolutions
* Pools
* Activations

* Fully-
connected
classification
layer

\_ conv (180w + 5b)

maxpool conv (450w + 10b)

non-linear
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: maxpool
nhon-linear

fully-connected
(1600w + 10b)

non-linear
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CNNs in Practice

e Pattern can be repeated several times

* Still “deep”, but convolutions are the most important part



CNNs in Practice

e Filters are the things that “search” for something in particular in an
image

* To search for many different things, have many different filters

/ %2
Convolution Layer
A A

activation maps
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CNNs in Practice

* Hyperparameters relevant to CNNs:

* Kernel size
e Usually small

 Stride
e Usually 1 (larger for pooling layers)

e Zero padding depth
* Enough to permit convolutional output size to be the same as input size

* Number of convolutional filters
* Number of “patterns” for the network to search for



CNNs in Practice

* 1x1 convolutions are a special case

e Convolve the feature maps, rather
than the pixel maps

* Function as a dimensionality
reduction step (like pooling)
e Can also be used in pooling




CNN Applications: Object Localization

* Two discrete steps:

* Localizing a bounding
box (regression)

* |dentifying the object
(classification)
* Generate “region
proposals”

e Classification
accuracy

>lassification head”

The best result now is Faster RCNN with a resnet 101 layer.

R-CNN Fast R-CNN Faster R-CNN
Test time per 50 seconds 2 seconds 0.2 seconds
image
(with proposals)
(Speedup) 1 25x 250x
mAP (VOC 2007) 66.0 66.9 66.9




CNN Applications: Single-shot Detection

0

* Combines region-proposal
(regression) and object detection
(classification) into a single step ™

* Use deep-level feature maps to
predict class scores and
bounding boxes

200 >

300 Li"\\ . (

* Families of Single-shot detectors: s \

* YOLO (single activation map for
both class and region)
e SSD (different activations)

« R-FCN (like Faster R-CNN) o w0 me w0 w0 0




CNN Applications: Object Segmentation

* Create a map of the detected
object areas

* “Fully-convolutional” networks

 Substitute fully-connected layer
at end for another convolutional
layer

* Activations show object

e Resolution is lost in
upsampling step
 Skip-connections to bring in
some of the “lost” resolution

* EXTREME Segmentation

* Replace upsampling with a
complete deconvolution stack

III

More semantic




CNN Applications: Object Segmentation

* “DeconvNet”: Super-expensive to train
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0 response submitted

The parameter sharing / receptive field architecture unique to CNNs enables dramatically reduced parameter counts in neural architec-
tures, exploiting the inherent sparsity of images. What is a disadvantage of this approach?

CNNs have no
notion of absolute
object locality, or of
relative positioning
of multiple objects.

CNNs tend to blur CNNs cannot build CNNs struggle to
object boundaries, up an internal identify objects in
much like optical representation of high-resolution

flow. object hierarchy. images.

22 | R Bar 10of1




Conclusions

* CNNs are mostly “convolutions inside a deep network”
* Main operator (i.e. most important) is the convolution
* Exploits image sparsity: important features are local

* A couple new(ish] tricks include
* Automatically learning the filters as part of the training process
* Using pooling
* 1x1 convolutions

* Applications include
* Object detection (is there an object)
* Object localization and segmentation (where is the object)
* Object classification (what is the object)
» Zero- and single-shot detectors
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