


Motion analysis

* Our world is in motion




Motion analysis

* Core problem in computer vision




Motion analysis

* Object tracking

* Trajectory analysis

* Object finding

* Video enhancement,
stabilization, 3D

reconstruction, object
recognition




Perception vs Representation

* We can perceive motion where none exists, or not perceive motion
where motion exists




Perception vs Representation

(I promise this is
a static image)




Perception vs Representation

* Other examples




Perception vs Representation

e Shapeless or transparent objects, or limited sight, are problematic

 Computer would not see motion in the previous images (which is
good)

e ... computer doesn’t “see” in the human sense
* Point being: computers only analyze motion of opaque, solid objects

* Key: motion representation




Representing Motion

* We perceive optic flow Optic flow

* Pattern of flow (vectors) |

* Ecological optics —J.J. = ;i:-f,\“""—

Gibson ~ B — =




Representing Motion

e Deviations

* 3D motion of object is
represented as 2D projection—
losing 1 dimension of
information

* Optical flow = 2D velocity
describing apparent motion




Thought Experiment 1

* We have a matte ball, rotating

e What does the 2D motion field
look like?

 What does the 2D optical flow
field look like?




Thought Experiment 2

 We have a matte ball, stationary

e What does the 2D motion field
look like?

 What does the 2D optical flow
field look like?




Just to throw a wrench in things...

* The Aperture Problem: lighting is not the only source of error.
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Aside

 With all these limitations and pitfalls, it’s important to keep the
following items in mind (with thanks to Dr. Michael Black):

 We are, more or less, intentionally forgetting any physics we might
know

 We are dealing with images

* We’re hoping the 2D flow is related to the structure of the world and
can be a viable proxy for the motion field

* Fixing the above is important—you could work on it!




Optical Flow

* Motion, or displacement, at all pixels
* Magnitude: saturation
* Orientation: hue
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Optical Flow Goals

* Find a mapping for each pixel (x4, y1) -> (X5, V5)

* Seems simple enough...?

* Motion types
* Translation

e Similarity
* Affine

* Homography
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This is known as parametric motion: powerful

M OtiO N TypeS in its expressivity, but limited in its ability to

describe arbitrary motion in videos.
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Optical Flow Definition

* Image pixel value at time t
and location x = (x, y)

 Horizontal u and vertical v
components of the flow

Optic flow Optic flow

Rotation of observer (3D representation) (2D representation)
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Optical Flow Assumptions

* Brightness Constancy

* Any one patch from frame 1
should look more or less the
same as a corresponding
spatial patch from frame 2

Iz +u,y+ot+1)=I(z,y,1)




Optical Flow Assumptions

* Spatial Smoothness

* Neighboring pixels in an image
are likely to belong to the
same surface

» Surfaces are mostly smooth

* Neighboring pixels have similar
flow

Up = Unp ?_I

nech) B




Objective Function

* Brightness constancy ("data term”)

Ep(u,v) = Z(I(xs + U, Ys + Vs, + 1) — I(z,y,1))°

S

* New developments?
e Squared error implies Gaussian noise!




Objective Function

 Spatial term for the flow fields u and v

Es(u,v) = Z (s — Un)? + Z (Vs — Vn)?

neG(s) neG(s)
* New developments?
* Flow field is smooth
* Deviations from smooth are Gaussian
* First-order smoothness is all that matters
* Flow derivative is approximated by first differences




Objective Function

E(u,v) = Ep(u,v) + AEg(u,v)




Objective Function

* So to solve for flow field, we just take derivative, set to 0, and solve
for u and v, right?

Ep(u,v) =Y (I(zs + ts,ys + vs, t + 1) = I(,y,1))’

S

277?




Linear approximation

* Taylor series expansion
edx=udy=vdt=1

Ep(u,v) =Y (I(zs + ts,ys + vs, t + 1) — I(z,y,1))°

S

0, 0, 0,
[(z,y,t) + de—I(z,y,t) + dya—uf(x, y,t) +dt - I(x,y,t) — I(z,y,t) = 0

ox ot

0 0 0
U’%I(mayat) + va—y‘[(xayat) + &I(ﬁ,y,t) =0




Constraint equation

0 0 0
u%I(xava | vayl(wvyat) + al(xayat) =0

* ...but really, we write it this way:

LE’U,—FIyU—l—It:O

* More new developments
* Flow is small
* Image is a differentiable function
* First-order Taylor series is a good approximation




Form of the constraint equation

* One equation, two unknowns At a single image pixel, we get a line:

 Aline | Tu+lv=-I,
* We know the solution is ’ '
somewhere along the line

* lll-posed problem: hence, the S T
Aperture Problem -

t
2

@ ' \ “Normal flow”




Nevertheless, they persisted

* Horn and Schunck, 1981

E(u,v) =Y (Iosus + Iysvs + Is)> + A Y ((us — un)® + (vs — vn)?)
S neG(s)
* Take partial derivatives with respect to u and v; setto O

0= (I sus + LusIysvs + Losles) + X ) (us —up)
S neG(s)

0 = Z([w,sly,sus + 17,

S




Revisiting assumptions

* Many of the Horn & Schunck ‘81 problems can be attributed to the
fact that they were attempting dense image processing on 1981
computers

* Still, the problems outlined by the assumptions can cause problems in
the real-world (aperture problem, ill-posed optimization, assumption
of small motion, etc)

 Lots of these assumptions are still outstanding problems but have
been addressed, at least in part

e (Check out the 2013 talk by Dr. Michael Black!)
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“Flow is smal

* Have you ever seen a Marvel movie?

MakeAGIF.com




Coarse-to-fine

* Build an image “pyramid”

e Exactly how this is done varies
considerably

e Bottom line: flow calculated in
original image is much smaller
at top of pyramid (i.e.,
assumptions hold)

* Most optical flow algorithms do
something like this
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Coarse-to-fine

Original

* This one “small” modification to
Horn & Schunck actually gives
pretty good results!

’;T'*&

Coarse-to-fine




“Flow is smooth”

* Does brightness constancy hold?

* Are spatial derivatives of optical flow actually Gaussian?

* As machine learning practitioners, how would we answer these
questions?

* Need ground truth—very recent developments




Durien Open Movie Project

e Sintel (full movie—go watch!)
 Made with Blender

* All assets openly available—
including ground truth optical
flow fields

* 1628 frames of ground truth flow
* 1024x436 resolution
* max velocity over 100 ppf

 separated into training/testing . blender \




CS Mantra

* We solve one problem (need of ground-truth optical flow) by adding
an additional abstraction layer (assume flow statistics of Sintel will
generalize)

e ...which usually introduces a new problem

* Will these flow statistics be at all useful for optical flow models
outside of action movies?




Flow Statistics

* In general, optical flow fields are sparse (i.e., most flow fields are 0)

Horn and Schunck




Flow Statistics

* Using the flow statistics from training data, we can determine that
brightness constancy usually holds

I (2,5) — Ia(t + us 5,5 +v; 5)

* Spark peak at O
* Heavy tails are violations of brightness constancy




“Neighboring pixels move together”

* Except when they don’t

* Could consider these pixels
as “spatial outliers”

e But want to consider them
as part of different surfaces
with different motions




Spatial statistics

 Spatial derivatives of the optical flow field u and v

Op Op - (o] 0
=5 =5 =5 -5
10 =10} =10 =10}
=5 0 5 =5 0 5 -5 0 5 -5 0 5
(a) du/dz. (b) du/dy. (c) Bv/dz. (d) 8v/dy.

e Similar story: flow is usually smooth, but motion boundaries create

have heavy tails




Markov Random Fields

Ground

* The heavy tails on the spatial Truth

statistics are why optical flow has
such problems with object
boundaries

* Quadratic smoothness term in objective

* Horn & Schunck [inadvertently?]
kicked off 30+ years of research into ) .
Markov Random Fields e

* Need a “robust” formulation that can
handle multiple surfaces moving
distinctly from each other




Robust Formulation

* Replace quadratic terms in original energy function with a new
error function that gives less weight to large errors

E(u,v) = Y p(la,sts + Iy svs + Its, 0p)

+ A Z (p(us — up,08) + p(vs —vy),08))

* Note the rho functions and sigmas ,O(I, 0) —




Robust Formulation

* Previous L2 (squared error) is
[.Z norm | sensitive to outliers

p(z) = z*

e QOutliers = occasional large
flow derivatives

* New error function saturates
at larger magnitudes

* |s robust to outliers




Robust Formulation

* Object boundaries
are considerably
h Horn and
S arper Schunck

e Success! Go home?

Robust



Robust Formulation

e Optimization is considerably more difficult
* Non-linear in the flow term

* No closed-form solution

* Approaches
* Gradient descent
* Graduated non-convexity
* |teratively re-weighted least squares




Current Methods

e Current methods employ a combination of
Coarse-to-fine (image pyramids)
Median filtering (convolutions)
Graduated non-convexity
Image pre-processing
Bicubic interpolation (sparse to dense)

e Layers and segmentation (Sevilla-Lara et al 2016, CVPR)
* Pyramid networks (Ranjan et al 2016, CVPR)

* Deep convolutional networks (Dosovitskiy and Fischer et al 2015,
ICCV)




Administrivia

* Hope you enjoyed the snow days!
* No idea how we’ll get caught up... oh well

* AutolLab is UP AND RUNNING
e As usual, SSL and email were the biggest time sinks
e HW1 is still due by 11:59pm Tuesday, January 28
* Click link in Discord to get access to the course

* Some other date changes...

* HW2 will come out on Jan 28 (due 2.5 weeks later, Feb 13)
* HW3 will come out on Feb 11 (due 2.5 weeks later, Feb 27)
* Advantages & Disadvantages
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