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* What is an embedding?
ion
* Reveals / preserves

Embeddings
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* Despite 64x64 pixels, only so many ways to draw a 9

* Low-dimensional manifold

Embeddings




Principal Component Analysis (PCA)

1. Orthogonal projection of data
2. Lower-dimensional linear space known as the principal subspace

3. Variance of the projected data is maximized

Two definitions of PCA

Maximizing Variance Minimizing Reconstruction Error




Maximizing Variance

 We start with the idea of projection from D-dimensions x to M-

dimensions u
e uisa unit vector,sou'u =1.

* Mean of projected data is u’ X, wher

 Variance of the projected data

* where S is the sample covariance
matrix of the data




Maximizing Variance

* We want to maximize projected variance u,'Su, with respect to u,

* Obvious problem: needs to be constrained, or else | |u,| | -> o

 Appropriate constraint: u,’u, = 1, enforced with Lagrange multiplier
ty Sty + A (1 — Uy uq)
* Set derivative with respect to u; = 0, and a stationary point appears
Su1 = )\111,1
* Means u,; must be an eigenvector of S! Left-multiply by u,’
i S = M
 Variance will be max when these are 15 eigenvalue & eigenvector




Minimizing Error

 We want the reconstruction error using the first M < D principal

components to be minimal
1 N We want to

J = —Zan _jjnHQ minimize J

N

n=1

* This can be rewritten purely in terms of eigenvectors u;
D

=T Q= Eigenvectors u; come
J = E U; Su; 8 S
out of equation for X

n=M-+1

* Therefore, the distortion measure of
reconstruction using the M eigenvectors
of the largest eigenvalues is the sum
of the remaining D - M eigenvalues




Minimizing Error
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Principal Component Analysis

Advantages Disadvantages

* Optimal low-rank approximation ¢ Principal components are linear
in terms of squared combinations (cannot generate
reconstruction error nonlinear PCs; struggles to

determine PCs in geodesic

e Completely unsupervised
spaces)

* Endless applications _
e Basis vectors are dense and

sometimes difficult to interpret




Kernel PCA

* Whenever we compute a kernel, we rely on a scalar (dot) product of
the form x'x

* Conventional PCA is an outer product (covariance), XX

* What if we replaced this with an inner product, X'X
* This “Gram matrix” is what we compute eigenvectors of in PCA anyway

* If anything, Kernel PCA is a generalization of PCA to arbitrary
similarity (kernel) functions!

* First step: express conventional PCA such that data vectors x appear
only in the form of scalar products




Kernel PCA

» Recall that the principal components are defined by eigenvectors of
the covariance matrix

Sﬁ’& — )\zﬁz iis the

] ] ] dimensional
* and sample covariance matrix defined by index
1 N

2 V N is the number
n=1 of data points

* and eigenvectors are normalized such that




Kernel PCA

* In kernel PCA, we consider data that have already undergone a
nonlinear transformation:

zeRP () € RM

* We now perform PCA on this new M-dimensional feature space




Kernel PCA

e Sample covariance matrix C (now MxM)

1 < 5 5

» Goal: solve the eigenvector/eigenvalue equation without having to
explicitly operate in the M- dlmensmnal feature space

* Combining the two equations:  — Z &(Zn)d(Z0) T = T

 This reduces to

Ui = Z Qin®(T




Kernel PCA

e Substitute back into eigenvector equation and we get a royal mess

N
D HENE)T Y aimd () = N D aind (i)
n=1 m=1 n=1

« Remember our goal: work only in terms of k(x,, x..) = ¢(x,) ¢ (x,,)

* Multiply both sides by ¢(x))

1 N
~ > k(& Tn)

n=1




Kernel PCA

1 o N
e Look familiar? K2777) — )\iKT_fi

* Which reduces to
Kﬁi — )\7;’17,5

* (there’s some normalization magic that has to happen but we're
skipping that for now)




Kernel PCA

* Data in original data space (right panel, left subpanel) projected by
nonlinear transformation into feature space (right subpanel). By
performing PCA on feature space, PCs correspond to nonlinear
projections in original data space.

linear PCA kernel PCA
A |

X X
' X X

A kxy) = (xy) S kxy) = (xy)d




Kernel PCA

e Gaussian kernel
applied to 2D
data

* First 8 kernel
PCs

* Contours are
lines along
which the

projection onto % %
the 2 — > e w '_ > > - @;’.0..
corresponding 4 : e Q

PC is constant (courtesy of Bernhard Scholkopf)

k(x,y) = exp (=[x — y|*)




Kernel PCA
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Kernel PCA

Advantages
* Allows for nonlinear principal
components

* Infinitely flexible in terms of
allowed kernel functions

Disadvantages

e Requires finding eigenvectors
and eigenvalues of NxN matrix,
instead of DxD (large N is
problematic)

e Cannot project new, unobserved
data onto L-dimensional
manifold of kernel (similar to
transductive SSL!)




Sparse PCA

 Anyone remember lasso regularization?

* Regularization, in general, is a penalty to encourage small weights
(remember Assignment 2)

* Lasso (or L,) forces weights to 0 so they become sparse




Sparse PCA

* We still want to maximize u,'Su,, subject to u,/u, = 1

* ...and one more constraint: we want to minimize | |u;/ [,

* Formalize these constraints using Lagrangian multipliers

N D
min || X — WU’-’“H%ﬂE_jlnwim +72|W¢H1




Sparse PCA

* Qualitatively Sparse PCA
similar to PCA,
but with lots
more zeros




Sparse PCA

Advantages Disadvantages

* Simpler and more interpretable e Optimization procedure is non-
components convex (often use some version

- Resulting components are very of alternating least-squares)

similar to “standard” PCA




Dictionary Learning

* “Given a set of signals belonging to a certain class, one wishes to

extract the relevant information by identifying the generating causes;
that is, recovering the elementary signals (atoms) that efficiently

represent the data.”
* Reqgularization, Optimization, Kernels, and Support Vector Machines, Ch. 2

* Every embedding strategy ever?




Dictionary Learning
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Motivations

* Dictionary learning is ideally formulated for image denoising (and is
indeed a major application of dictionary learning)

Measurements y N '/L.O”"’Lg —l_ w

(image) Original
image




Motivations

Y = Torig + w
* Easily converted to an energy minimization problem

E(Z) = ||g — Z||5 + Pr(Z) e

becomes a MAP
estimation!

* Some classical priors
* Smoothness
Total variation
Wavelet sparsity
Lasso




Dictionary Learning

 We have our data X

e and wish to represent it using
some small number k atoms
(k <<< n)

* When combined with
coefficients, the linear
combinations with the atoms
should yield a nearly
complete representation of X




Dictionary Learning

* This gives the minimization
n

min f-—Bg-q+h5-)

min > (117 — BA:||2 + h(G:)
1=

where h promotes sparsity in the coefficients, and B is chosen from

a constraint set

* The general dictionary learning problem then follows
1
(0, B) = || X — BO||F + h(O) + g(B)

where specific choices of h and g are what differentiate the
different kinds of dictionary learning (e.g. hierarchical, K-SVD, etc)




Dictionary Learning vs PCA

* Remember the operational  Dictionary Learning (sparse
definition of PCA? coding)

Orthogona| projection of data 1. Minimize reconstruction error
Lower-dimensional linear space 2. Linear combination of atoms

known as the principal subspace 3. Sparse, overcomplete basis

Variance of the projected data is

maximized .
Two definitions of PCA Objectives are
reconstruction,

sparsity, and
redundancy

Maximizing Variance Minimizing Rt onstruc.ion Error




Dictionary Learning

Pr(x) = A||a]|o for x ~ Do
afl
al2

dy - |d,

N N ——— a[p]
XERM DcRmxp N\’

acRP sparse




A p p | i Ca t i O n S Cluster 1 5

(1-v) B

* Image denoising
e Sparse basis forces out noise

object categorization

* Image restoration &
inpainting




. . . B is typically implicitly constrained
Dictionary Learning o ol b 2 e € i

X m reals, to make optimization
tractable

* General formulation

50, B) = ,||X — BO|3#Fh(©) + ¢(B)

* More common: set g to |dent|ty and hto L; norm

$(6,B) = min - Zsz BO;|13 + A1l lx




Optimization

* Problems with the objective function?

. 1 = — A 112 ~
¢(@,B)—glégglm—B&HﬁM\HHh

e Squared loss is convex

e Regularization is convex

e Squared loss + regularization is not convex
e Even worse, often non-smooth




Optimization

 Alternating minimization algorithm
* Two-block Gauss-Seidel

e Streaming online learning

At iteration (or minibatch) t, signal x, and sparse code 8, are computing
using the current dictionary

. 1, - -
0, = arg min §||£Ut — By_10]|5 + N|6]|1

* Which can then be usedtto update the dictionary

1 | ~ -
g:(B) = n Z 5”3% — BO;||5 + Al|6:]]1
i=1

* g can be efficiently solved using block coordinate descent on columns of B




Rank-1 Dictionary Learning (R1DL)

* KDD 2016

Scalable Fast Rank-1 Dictionary Learning
for fMRI Big Data Analysis




R1DL

 Reformulates dictionary learning as an alternating least-squares

problem
* (embraces the optimization procedure)

* Uses 0-"norm” instead of L,
* Given rank-1 formulation, this is an inexpensive way of guaranteeing sparsity

* Iteratively learns rank-1 dictionary atoms until k have been found
» "Deflates” data matrix on each iteration




R1DL

* Energy function L L(?j, 17) — HS — ﬁﬁT' ‘F

e Data matrix S, vectors u and v
*|lull=1

* || v||o<r whereristhe sparsity constraint (literally, # of nonzero elements in
v)

* |terate until convergence of u (atoms) and v (sparse codes)
— ) —_ — — . —)—)T
U =argmin||S — @t ||p ¥ =argmin||S — uv
U U

? Hg(j+1) _ g(j)H <€

* “Deflate” data matrix S(t+1) — S(t) i
* Repeat until k atoms & sparse codes are learned




summary

* Principal Components Analysis
 Classic dimensionality reduction technique

* Kernel PCA
* Introduces nonlinearities into component vectors
* Permits use of arbitrary similarity functions
e Can capture much richer and more complex interactions in data
* Much more expensive to compute than PCA

* Sparse PCA
* Qualitatively similar results to PCA
 Components are sparse, improving interpretability
* Learning procedure is non-convex, typically requiring ALS




summary

* Dictionary learning is focused on developing a basis of atoms and
coefficients
* Coefficients are sparse
* Atoms form an overcomplete representation of the data
* Chosen to minimize reconstruction error

* Explicitly factorizes out noise
* Can be customized in the form of a prior

* Optimization is often non-convex and non-smooth, requiring
alternating minimization strategies or online learning

 R1DL focuses on leveraging optimization strategies to iteratively
learn the basis, one atom at a time

e Other variants include K-SVD, Hierarchical DL, and Elastic Net




Questions?




Up Next

* Tomorrow: workshop 6
* Please attend, even if you aren’t presenting!

* Thursday: Guest Lecture!
* Meekail Zain, PhD Candidate

* Next Tuesday: workshops 7 and 8
* Next Wednesday: In-class Q&A for midterm prep

* Next Thursday
* Midterm exam!
e HW3 due!

* SPRING BREAK
* No HW, BUT: start thinking about final projects (topic, teammates, etc)




Resources

* Elements of Statistical Learning, Chapter 14

* Pattern Recognition and Machine Learning, Chapter 12
* Machine Learning: A Probabilistic Perspective, Chapter 14

* An Introduction to Statistical Learning, Chapter 10



http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf

