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Last time...

* Motion analysis via optical flow
e Parametric vs energy-based formulations
* Importance of assumptions

* Modern formulations
» Robustness to outliers (large optical flow)
» Relatedness to markov random fields
* Coarse-to-fine image pyramids




Today

* A specific type of motion: dynamic textures
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Dynamic textures

* “Dynamic textured sequences are scenes with complex motion
patterns due to interactions between multiple moving components.”

* Examples
* Blowing leaves
* Flickering flames
e Water rippling
* Multiple moving components: problematic for optical flow

* How to analyze dynamic textures?




Dynamical Models

* Goal: an effective procedure for tracking changes over sequences of
images, while maintaining a certain coherence of motions




Dynamical Models

* Hand tracking

* Top row: slow
movements

e Bottom row: fast
movements

* Fixed curves or
priors cannot
exploit coherence
of motion




Linear Dynamical Models

 Two main components (using notation from Hyndman 2006):

Appearance yt — Cxt _I_ Ut

Model

e > Lt — ACL’t—l + W’Ut




Autoregressive Models

* This is the definition of a 15t-order autoregressive (AR) process!

ry = Az 1 + Wy

* Each observation (x,) is a function of previous observations, plus some
noise

* Markov model!




Autoregressive Models

* AR models can have higher orders than 1

* Each observation is dependent on the previous d observations

Lt — AliCt_l -+ AQCEt_Q + .. T Ad.’Et_d + W’Ut




Appearance Model

* y,: image of height h and
width w at time t, usually
flattened into 1 x hw yt _—

V/Je1{e]}

* X,: state space vector at
timet, 1 x g (where g <<< Image in a
hW) sequence

* u,: white Gaussian noise

* C: output matrix, maps
between spaces, hw x g

Output matrix

Cﬂjt + Uy

Low-
dimensional
“state”

Noise inherent
to the system




Appearance Model

Yt — Czy

Each of these is 1
column of C.

There are g of them
(first 4 shown here).




Appearance Model

* How do we learn the
appearance model?

* Choose state-space U-hat is a matrix of

dimension size g the first q(CJolumns of

* Noise termis i.i.d

Gaussian V-hat is a matrix of the

first g columns of V, and
sigma-hat is a diagonal

— matrix of the first g
yt - :Et Ut singular values




State Model

State transition
* X, and x,_;: state space matrix
vectors at times tand t —

1, each 1 x g vector '/L.t p— A-/L.t—]_ —l— W/Ut

* A: transition matrix, g x q
matrix

o . Low- Low-
e W: drlvmg NOoISe, g X g dimensional dimensional Driving noise
matrix state at time t stateatt-1

* v,: white Gaussian noise




State Model
ry = Az 1 + Wy

* Three textures

red: water, blue: trees1, black: trees2

oq=2




State Model

* How do we learn the state model?

ry = Axi_1 + Wy

* Homework 2, ahoy!




LDS as Generative Models

* Once we’ve learned the parameters, we can generate new instances

* Major strength of LDS!




Problems with LDS

e PCA = Linear + Gaussian

 What if the state space isn’t linear, or data aren’t Gaussian?

* Nonlinear appearance models
* Wavelets
* IsoMap
* LLE
Kernel PCA
Laplacian Eigenmaps

* These introduce their own problems!




Problems with LDS

* Comparing LDS models

* Given a sequence Y. 0 = (C, A, Q)

* New sequence Y 0 = (0/7 A,a Q,)

* How do we compare these
systems?

e Despite linear formulation, v
are NOT Euclidean

* Valid distance metrics include
spectral methods and
distribution comparators




Comparing LDS

» Select multiple, non-overlapping patches from each video
 Build LDS for each patch

GL(n) x ST(p,n) R
{ei |l Il 2}
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VIDEO SEQUENCE CODEWORDS CLUSTER CENTERS




Comparing LDS

* Embed the LDS in low-dimensional space
* We'll come back to this when we discuss embeddings!

« Compute cluster centroids in embedding space BRI min lej — kqll®
* These centroids become codewords

* Represent videos as a document of codewords
* Compute TF-IDF

* Perform classification on document weight vectors




Comparing LDS
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Deep learning + dynamic textures

Fine-tuned
/xy’ Texture CNN

backpropagation (train)

xt Fine-tuned
Texture CNN

backpropagation (train)

Fine-tuned
Texture CNN

backpropagation (train)

boil fire flow. . fount sea sm. wat. wfall

boil
fire
flower
fount
plants
sea

smoke

(a) xy
Figure 4.3: Examples of DT slices in three orthogonal planes of foliage, traffic and

sea sequences from the DynTex database. (a) xy (spatial), (b) x¢ (temporal) and (c)
yt (temporal).
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Mamba state space models

* Motivated by performance and space considerations of Transformer
architectures in large language models

e (Conceptual) combination of RNN + CNN + AR models

* Innovations

* Input selection mechanism
* Hardware-aware algorithm
* Architecture

 Vision Mamba (ViM) for image processing

* We'll get into this more when we get to deep networks. For now:




Mamba state space models
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Conclusion

 Dynamic textures are motion with statistical regularity
e Regularity can be exploited through parametric representation

* Linear dynamical systems (LDS)
* Autoregressive models (AR)
* Markov assumption
* Representation model + State model
* Generative models

* Deep networks can learn the same feature set and in some cases exceed
the performance of LDS (though are harder to train)

* Mamba state space models make LDS-like architectures cool again
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