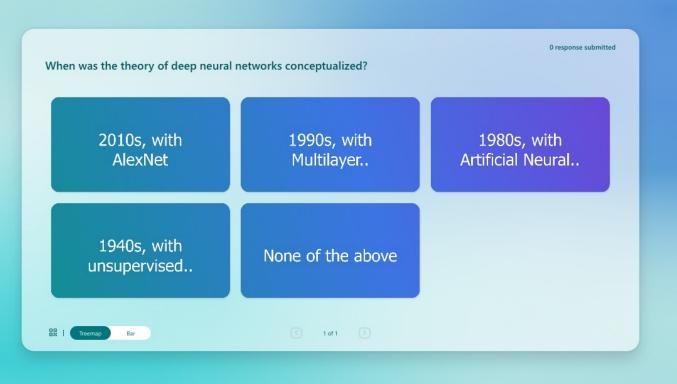
Biologically-inspired Computing II: Neural Networks

CSCI 4360/6360 Data Science II

Survey

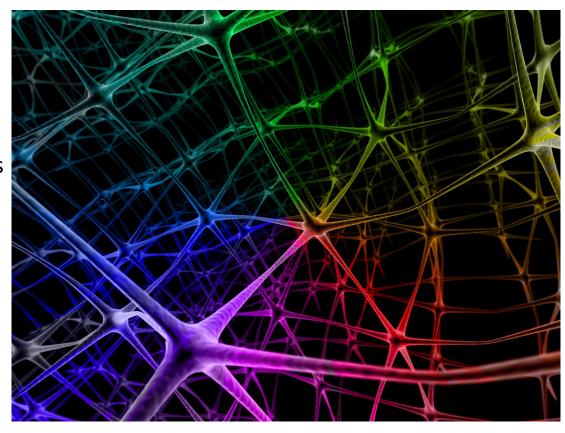
- Who's heard of artificial neural networks?
- Who knows what a neuron or synapse is?
- Who knows what an activation function is? Different types?
- Input layers, hidden layers, output layers?
- Who's heard of deep learning?

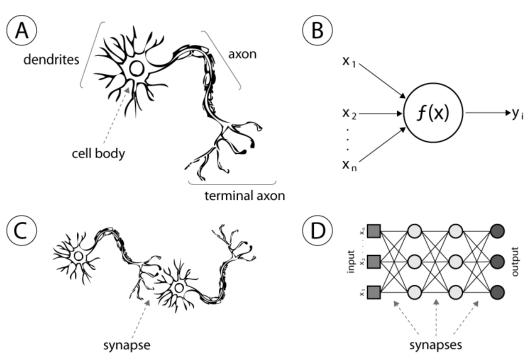
History of Neural Networks



Not a new concept!

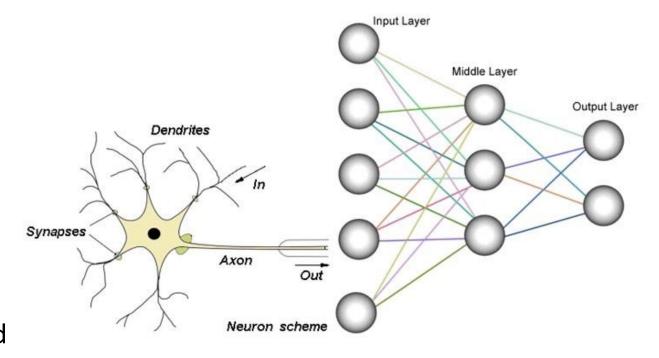
- Roots as far back as 1940s work in unsuperivsed learning
- Took off in 1980s and 1990s
- Waned in 2000s
- "Biologically-inspired" computing
 - May or may not be true
- Shift from rule-based to emergent learning

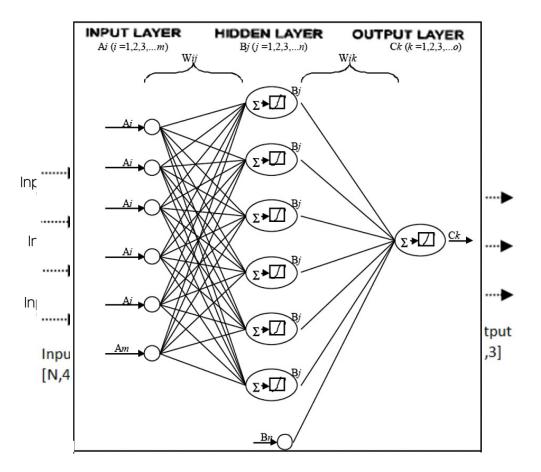




- Kind-of modeled after biological brains
 - Hence: "artificial"
- Neurons: basic unit of thought and computation
 - **Synapses:** connections between neurons
 - Activation functions:
 determine whether or not a
 neuron "fires", given firings (or
 not) of previous connected
 neurons

- ANNs organized into layers
- Each layer is a collection of neurons
- Each neuron has an activation function that determines whether to "fire"
- Signal is propagated to the next layer





- Types of layers
 - Input
 - Output
 - Hidden
- Types of activation functions
 - Identity
 - Step (threshold)
 - Linear
 - tanh
 - sigmoid
 - Rectified Linear (ReLU)
 - https://en.wikipedia.org/wiki/Activa tion_function#Comparison_of_activ ation_functions

Activation Functions

Among the most important architectural decisions to be made

- Nonlinear: two-layer ANN can be proven to be a universal function approximator
- Continuously differentiable: essential to gradient-based training of the ANN (which we use in backpropagation)
- Range: gradient-based methods are more stable when range of activation function is finite (i.e., tanh is [-1, 1])

Single Neuron

- Input neurons
- Each incoming value from previous layer has a weight
- Weighted sum in neuron
- Activation function with a threshold
- Output from neuron sent to next layer

Single Neuron

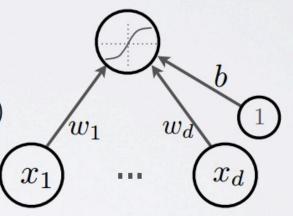
Neuron pre-activation (or input activation):

$$a(\mathbf{x}) = b + \sum_{i} w_i x_i = b + \mathbf{w}^{\top} \mathbf{x}$$

· Neuron (output) activation

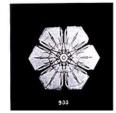
$$h(\mathbf{x}) = g(a(\mathbf{x})) = g(b + \sum_{i} w_i x_i)$$

- W are the connection weights
- b is the neuron bias
- $g(\cdot)$ is called the activation function



"Emergent behavior" perspective

- ANNs embody the principle of "emergent behavior": from relatively simple structure and rules comes remarkably complex phenomena
- Intelligence and intelligent life
- Relationship to ANNs
 - No central network processor
 - "Knowledge" is stored in the network itself (weights)
 - "Hierarchies" of concepts in deep networks



"Emergent behavior" perspective

Also called "connectionist" models

Humans

- Neuron switching time: ~0.001s
- Number of neurons: ~10¹⁰
- Connections per neuron: ~10⁴-10⁵
- Scene recognition time: ~0.1s
- Significant parallel computation

ANNs

- Neuron-like switching units (usually ~10⁴; GPT-4 has 10¹² parameters)
- Weighted interconnections among units (usually 10²-10³)
- Some parallel computation (limited by hardware, networks, etc)

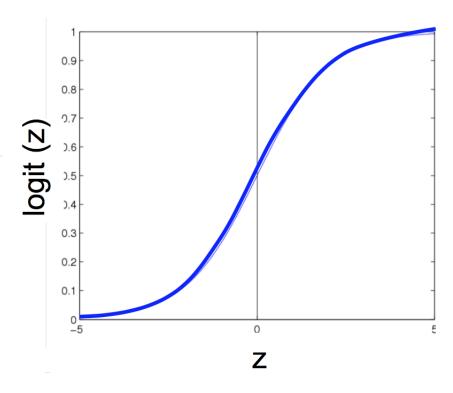
Logistic Regression

- Remember logistic regression?
- Functional form of classifier

$$P(Y = 1|X) = \frac{1}{1 + \exp(-(w_0 + \sum_i w_i X_i))} \frac{\sum_{i=0}^{9.7} x_i^{9.7}}{\sum_{i=0}^{9.7} x_i^{9.7}}$$

 Logit function applied to a weighted linear combination of the data

$$\frac{1}{1 + \exp(-z)}$$

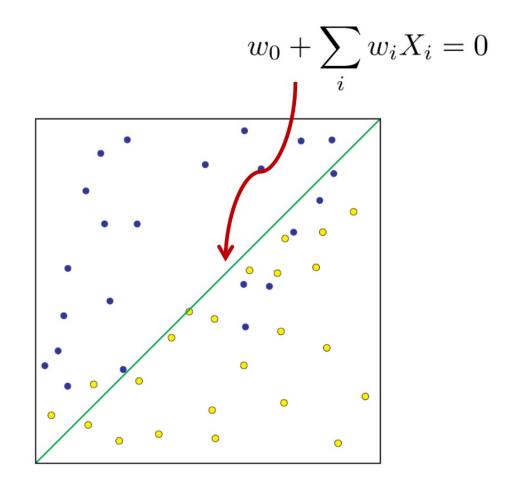


Logistic Regression

• LR is a linear classifier

$$P(Y=0|X) \overset{0}{\underset{\textbf{1}}{\gtrless}} P(Y=1|X)$$

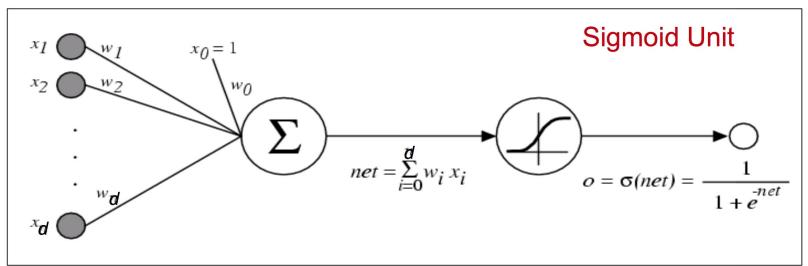
$$0 \overset{0}{\underset{1}{\gtrless}} w_0 + \sum_i w_i X_i$$



LR as a Graph

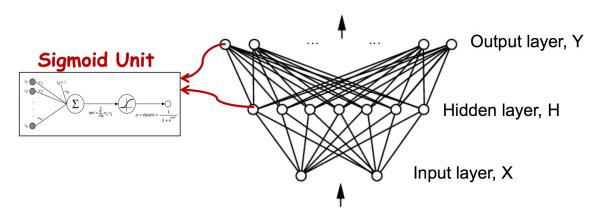
• Define output o(x) =

$$\sigma(w_0 + \sum_{i} w_i X_i) = \frac{1}{1 + \exp(-(w_0 + \sum_{i} w_i X_i))}$$



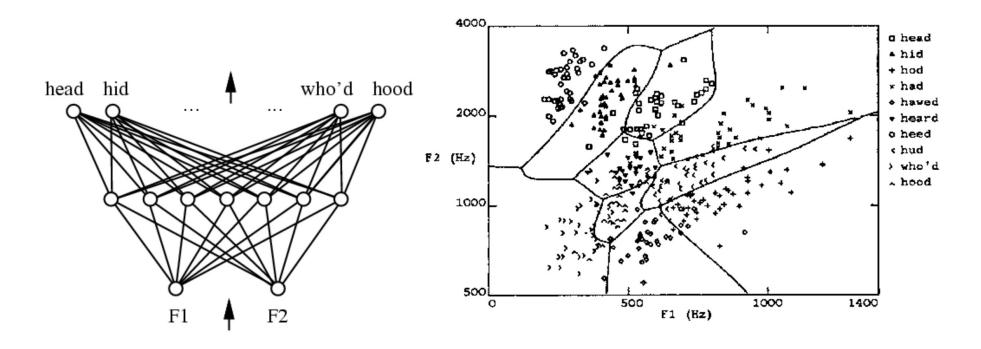
Properties of ANNs

- ANNs learn some $f: X \rightarrow Y$
- X and Y can be continuous / discrete variables
- Focus on feed-forward neural networks
 - Form *directed acyclic graphs*, or DAGs
 - Will break this focus when we reach recurrent neural networks!



ANN in practice

• Learn to differentiate homonyms using frequencies in audio



Deep Learning

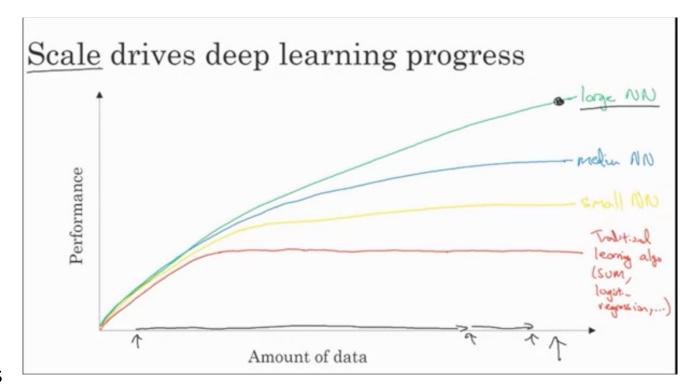
- Really a reformulation of neural networks to be "deep"
- Original conception called for multilayer neural networks ("multilayer perceptrons")
- Ran into numerous problems:
 - Theoretical (how to optimize over parameters of deep networks?)
 - Empirical (gradients vanish / explode over deep networks)
 - Engineering (hardware isn't capable of training deep networks)

Why is "deep learning" a thing?

- Concepts have been around for decades
- 1950s: didn't have backpropagation theory to efficiently train perceptrons of more than 1 layer
- 1980s: didn't have hardware to efficiently compute gradients for more than 2-3 hidden layers
- 1990s: didn't have enough data to make deep learning feasible
- 2000s: too depressed with previous failures to look into neural networks; pursued e.g. SVMs instead
- 2010s: Deep Learning[™]
- 2020s: Large Language Models (Transformers)

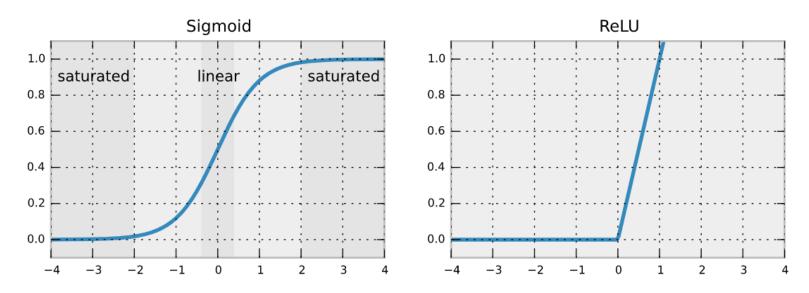
Deep Learning Catalysts

- Scaling of data and computation
- Data
 - "Big data"
- Computation
 - Specialized hardware
 - Open source frameworks
- Algorithms
 - Efficient implementations
 - New paradigms



Deep Learning Catalysts

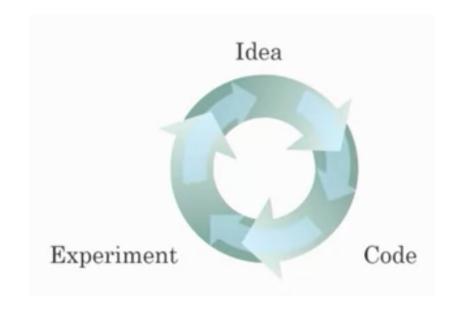
• Switching from sigmoid to ReLU activation functions



• Sigmoid becomes "saturated" at tails, resulting in very slow learning progress

Deep Learning Catalysts

- Hardware efficiency (i.e. Moore's Law)
- Faster prototyping of
 - New ANN architectures
 - New datasets
 - New activation functions
 - ..
- Practitioners and researchers benefit



TensorFlow Playground

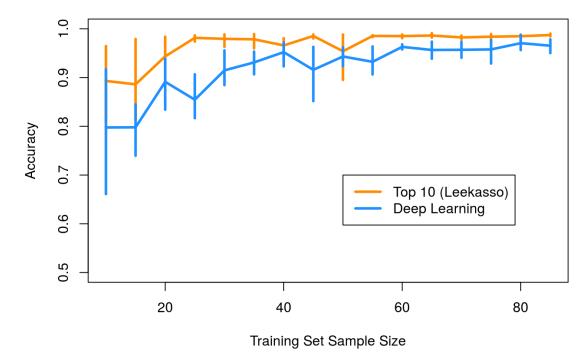
- Observe the process ANN training (concentric circles dataset)
- 2 inputs, 1 hidden layer (4 neurons), Sigmoid activation, L1 regularization
- 2 inputs, 1 hidden layer (4 neurons), ReLU activation, L1 regularization
- 4 inputs, 0 hidden layers, ReLU activation, L1 regularization
- How many training epochs are needed?
- What are the weights?

Deep Learning: Caveats

- 1. You Forgot to Normalize Your Data
- 2. You Forgot to Check your Results
- 3. You Forgot to Preprocess Your Data
- 4. You Forgot to use any Regularization
- 5. You Used a too Large Batch Size
- 6. You Used an Incorrect Learning Rate
- 7. You Used the Wrong Activation Function on the Final Layer
- 8. Your Network contains Bad Gradients
- 9. You Initialized your Network Weights Incorrectly
- 10. You Used a Network that was too Deep
- 11. You Used the Wrong Number of Hidden Units

Deep Learning: More caveats

- (along the lines of "don't use Hadoop if your data isn't that big")
- At smaller data sizes, no discernible performance bump from deep learning versus "traditional" methods
- "Traditional" methods likely more interpretable and simpler to use



Deep Learning: Even more caveats

Fizz Buzz (the classic interview question)

"Print numbers 1 through 100, except: if the number is divisible by 3 print 'fizz'; if it's divisible by 5 print 'buzz'; if it's divisible by 15 print 'fizzbuzz'."

• ...in Tensorflow!

interviewer: OK, so I need you to print the numbers from 1 to 100, except that if the number is divisible by 3 print "fizz", if it's divisible by 5 print "buzz", and if it's divisible by 15 print "fizzbuzz".

me: I'm familiar with it.

interviewer: Great, we find that candidates who can't get this right don't do well here.

me: ...

interviewer: Here's a marker and an eraser.

me: [thinks for a couple of minutes]

interviewer: Do you need help getting started?

me: No, no, I'm good. So let's start with some standard imports:

import numpy as np
import tensorflow as tf

interviewer: Um, you understand the problem is fizzbuzz, right?

me: Now we need to set up our model in tensorflow. Off the top of my head I'm not sure how many hidden units to use, maybe 10?

interviewer: ...

me: Yeah, possibly 100 is better. We can always change it later.

```
NUM_HIDDEN = 100
```

We'll need an input variable with width NUM_DIGITS, and an output variable with width 4:

```
X = tf.placeholder("float", [None, NUM_DIGITS])
Y = tf.placeholder("float", [None, 4])
```

interviewer: How far are you intending to take this?

me: Oh, just two layers deep -- one hidden layer and one output layer. Let's use randomly-initialized weights for our neurons:

```
def init_weights(shape):
    return tf.Variable(tf.random_normal(shape, stddev=0.01))

w_h = init_weights([NUM_DIGITS, NUM_HIDDEN])
w_o = init_weights([NUM_HIDDEN, 4])
```

So each training pass looks like

```
for start in range(0, len(trX), BATCH_SIZE):
   end = start + BATCH_SIZE
   sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]})
```

and then we can print the accuracy on the training data, since why not?

interviewer: Are you serious?

me: Yeah, I find it helpful to see how the training accuracy evolves.

interviewer: ...

And then our output is just our fizz_buzz function applied to the model output:

```
teY = sess.run(predict_op, feed_dict={X: teX})
output = np.vectorize(fizz_buzz)(numbers, teY)
print(output)
```

interviewer: ...

me: And that should be your fizz buzz!

interviewer: Really, that's enough. We'll be in touch.

me: In touch, that sounds promising.

interviewer: ...

Postscript

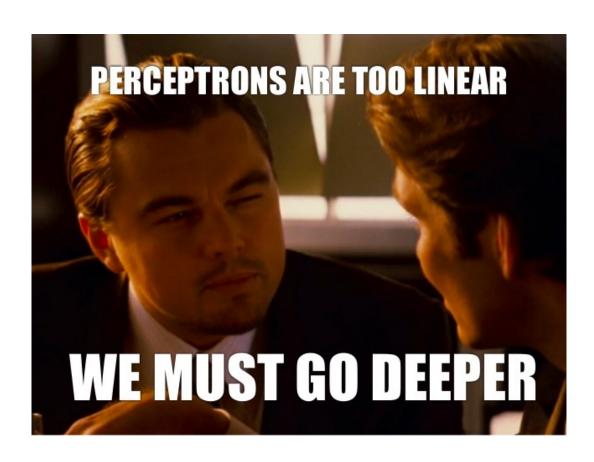
I didn't get the job. So I tried actually running this (<u>code on GitHub</u>), and it turned out it got some of the outputs wrong! Thanks a lot, machine learning!

I guess maybe I should have used a deeper network.

Next:

- A walkthrough of various architectures (CNNs, RNNs, autoencoders, GANs, Transformers, etc)
 - Swappable architectural units
 - Theory
 - Application strengths and weaknesses
- Final project updates
 - #1 is due a week from today! (March 27)
 - #2 is due two weeks later (April 10)
 - Final project presentations are the last week of class (April 22-24)
- Homeworks
 - HW4 due March 31
 - HW5 comes out March 31, due April 15

Questions?



References

- "Why is Deep Learning Taking Off?"
 https://www.coursera.org/learn/neural-networks-deep-learning/lecture/praGm/why-is-deep-learning-taking-off
- TensorFlow Playground http://playground.tensorflow.org/
- "My neural network isn't working! What should I do?" http://theorangeduck.com/page/neural-network-not-working
- "Don't use deep learning, your data isn't that big" https://simplystatistics.org/2017/05/31/deeplearning-vs-leekasso/
- "Fizz Buzz in Tensorflow" http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/