Biologically-inspired Computing
[I: Neural Networks

CSCl 4360/6360 Data Science Il

Survey

* Who’s heard of artificial neural networks?
* Who knows what a neuron or synapse is?
* Who knows what an activation function is? Different types?

* Input layers, hidden layers, output layers?

* Who’s heard of deep learning?

History of Neural Networks

When was the theory of deep neural networks conceptualized?

2010s, with 1990s, with 1980s, with
AlexNet Multilayer.. Artificial Neural..

1940s, with
unsupervised..

None of the above

Artificial Neural Networks

* Not a new concept!

e Roots as far back as 1940s
work in unsuperivsed
learning

* Took off in 1980s and 1990s B
* Waned in 2000s

* “Biologically-inspired”
computing
* May or may not be true

 Shift from rule-based to
emergent learning

Artificial Neural Networks

O * Kind-of modeled after biological
dendrites - ’ X1 brains
[=7 \ * Hence: “artificial”
i | Xy—> —¥i » Neurons: basic unit of thought
cell body {k 1/ and computation
e * Synapses: connections
© ¢ © Booo between neurons
' Y NN N N :
%éﬁ{s 52, 5.0 zzg.“zxg.“zxg ¢ * Activation functions:
/gs%%g A’A’A " determine whether or not a
A o1 neuron “fires”, given firings (or
synapse synapses not) of previous connected

neurons

Artificial Neural Networks

* ANNs organized oG

into layers O

e Each layeris a
collection of Deirdrites
neurons

Middle Layer

—— Q Output Layer

* Each neuron has an
activation function synapses”
that determines

hether to "fire”
e o "~) Neuron scheme O/

 Signal is propagated
to the next layer

Artificial Neural Networks

INPUT LAYER HIDDEN LAYER OUTPUT LAYER
Ai(=123..m) Bj (i =1.2.3...n) Ck (k=12.3....0)
' * Types of layers
* Input
* Output
* Hidden
e .» * Types of activation functions
....... i o Identity
d e * Step (threshold)
""" 1 * Linear
) e * tanh
tput * sigmoid
'[’I:jp: Al * Rectified Linear (ReLU)
' * https://en.wikipedia.org/wiki/Activa
tion function#Comparison of activ
ation functions

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function

Activation Functions

* Among the most important architectural decisions to be made

* Nonlinear: two-layer ANN can be proven to be a universal function
approximator

* Continuously differentiable: essential to gradient-based training of
the ANN (which we use in backpropagation)

* Range: gradient-based methods are more stable when range of
activation function is finite (i.e., tanh is [-1, 1])

Single Neuron

* [nput neurons

* Each incoming value
from previous layer
has a weight

* Weighted sum in
neuron

e Activation function
with a threshold

e OQutput from neuron
sent to next layer

Single Neuron

* Neuron pre-activation (or input activation):

a(x)=b+ > wx;=b+w'x

* Neuron (output) activation

h(x) = g(a(x)) = g(b+ >_; wiz:)

* W are the connection weights
» b is the neuron bias

- g() Is called the activation function

“Emergent behavior” perspective

* ANNs embody the principle of “emergent
behavior”: from relatively simple
structure and rules comes remarkably
complex phenomena

* Intelligence and intelligent life

* Relationship to ANNs

* No central network processor

* “Knowledge” is stored in the network itself
(weights)

* “Hierarchies” of concepts in deep networks

“Emergent behavior” perspective

e Also called “connectionist” models

* Humans Upshot: ANN-based artificial
* Neuron switching time: ~0.001s intelligence isn’t going to

Number of neurons: ~101° SMETBE SAVEME So0n
Connections per neuron: ~10%-10°
Scene recognition time: ~0.1s
Significant parallel computation

* ANNs

* Neuron-like switching units (usually ~10% GPT-4 has 10'? parameters)
* Weighted interconnections among units (usually 102-103)

* Some parallel computation (limited by hardware, networks, etc)

Logistic Regression

* Remember logistic regression?

* Functional form of classifier

logit (z)

* Logit function applied to a
weighted linear combination of
the data

Logistic Regression

* LR is a linear classifier

0
P(Y =0|X) = P(Y = 1]|X)
1

0
1

(

LR as a Graph

* Define output o(x) =

Sigmoid Unit
net ZIEOW,' X o = G(net) = l-ner
|l +e

Properties of ANNSs

* ANNs learnsome f: X2 Y
* X and Y can be continuous / discrete variables

* Focus on feed-forward neural networks
* Form directed acyclic graphs, or DAGs
* Will break this focus when we reach recurrent neural networks!

ANN In practice

 Learn to differentiate homonyms using frequencies in audio

4000

a head
a hid

+ hod

x had

¢ hawed
v heard
o heed
< hud

» who'd
~ hood

head hid A who'd hood

1000 1400

Deep Learning

* Really a reformulation of neural networks to be “deep”

 Original conception called for multilayer neural networks (“multilayer
perceptrons”)

* Ran into numerous problems:
* Theoretical (how to optimize over parameters of deep networks?)

* Empirical (gradients vanish / explode over deep networks)
* Engineering (hardware isn’t capable of training deep networks)

Why is “deep learning” a thing?

e Concepts have been around for decades

* 1950s: didn’t have backpropagation theory to efficiently train
perceptrons of more than 1 layer

» 1980s: didn’t have hardware to efficiently compute gradients for
more than 2-3 hidden layers

e 1990s: didn’t have enough data to make deep learning feasible

e 2000s: too depressed with previous failures to look into neural
networks; pursued e.g. SVMs instead

« 2010s: Deep Learning™ e S
e 2020s: Large Language Models (Transformers) @E
8\

Deep Learning Catalysts

 Scaling of data
and computation

* Data
* "Big data”

 Computation
* Specialized
hardware

* Open source
frameworks

 Algorithms

e Efficient
implementations

* New paradigms

Scale drives deep learning progress

-

Performance

—————————————————

/T

Amount of data

Deep Learning Catalysts

e Switching from sigmoid to RelLU activation functions

Sigmoid RelLU

I I I [I I I I I
1.0 = e N c ' '

' saturated: - linear - saturated !
I S T RS PP S TTERE P e

* Sigmoid becomes “saturated” at tails, resulting in very slow learning
progress

Deep Learning Catalysts

* Hardware efficiency (i.e. Moore’s

Law) [dea

e Faster prototyping of
* New ANN architectures
* New datasets
* New activation functions

* Practitioners and researchers Experiment Code
benefit

TensorFlow Playground

* Observe the process ANN training (concentric circles dataset)

e 2 inputs, 1 hidden layer (4 neurons), Sigmoid activation, L1
regularization

e 2 inputs, 1 hidden layer (4 neurons), ReLU activation, L1
regularization

* 4 inputs, 0 hidden layers, ReLU activation, L1 regularization

* How many training epochs are needed?
* What are the weights?

Deep Learning: Caveats

1.

2

3.

10.

11

You Forgot to Normalize Your Data

. You Forgot to Check your Results

You Forgot to Preprocess Your Data

. You Forgot to use any Regularization

. You Used a too Large Batch Size

. You Used an Incorrect Learning Rate

. You Used the Wrong Activation Function on the Final Layer

. Your Network contains Bad Gradients

. You Initialized your Network Weights Incorrectly

You Used a Network that was too Deep

You Used the Wrong Number of Hidden Units

Deep Learning: More caveats

1.0

* (along the lines of “don’t .
use Hadoop if your data
isn’t that big”)

* At smaller data sizes, no

0.9

0.8

Accuracy

discernible performance

0.7

bump from deep learning) — Depleaming
versus “traditional” °
methods o | | |
* "Traditional” methods 20 40 60
likely more interpretable Training Set Sample Size

and simpler to use

Deep Learning: Even more caveats

* Fizz Buzz (the classic interview question)

“Print numbers 1 through 100, except:
if the number is divisible by 3 print

‘fizz’; if it’s divisible by 5 print ‘buzz’; if

it’s divisible by 15 print ‘fizzbuzz'.

e ...in Tensorflow!

interviewer: OK, so | need you to print the numbers from 1 to 100, except that if the number
is divisible by 3 print "fizz’, if it's divisible by 5 print "buzz",and if it's divisible by 15 print
"fizzbuzz".

me: I'm familiar with it.

interviewer: Great, we find that candidates who can't get this right don't do well here.
me: ...

interviewer: Here's a marker and an eraser.

me: [thinks for a couple of minutes]

interviewer: Do you need help getting started?

me: No, no, I'm good. So let’s start with some standard imports:

import numpy as np
import tensorflow as tf

interviewer: Um, you understand the problem is fizzbuzz, right?

me: Now we need to set up our model in tensorflow. Off the top of my head I'm not sure how
many hidden units to use, maybe 107?

interviewer: ...

me: Yeah, possibly 100 is better. We can always change it later.
|NUM_HIDDEN = 100
We'll need an input variable with width NUM_DIGITS, and an output variable with width 4:

tf.placeholder("float", [None, NUM_DIGITS])
tf.placeholder("float", [None, 4])

interviewer: How far are you intending to take this?

me: Oh, just two layers deep -- one hidden layer and one output layer. Let's use randomly-
initialized weights for our neurons:

def init_weights(shape):
return tf.variable(tf.random_normal(shape, stddev=0.01))

init_weights([NUM_DIGITS, NUM_HIDDEN])
init_weights([NUM_HIDDEN, 4])

So each training pass looks like

for start in range(©@, len(trX), BATCH_SIZE):
end = start + BATCH_SIZE
sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]})

and then we can print the accuracy on the training data, since why not?

print(epoch, np.mean(np.argmax(trY, axis=1) ==
sess.run(predict_op, feed_dict={X: trX, Y: trY})))

interviewer: Are you serious?

me: Yeah, | find it helpful to see how the training accuracy evolves.

interviewer: ...

And then our output is just our fizz_buzz function applied to the model output:

teY = sess.run(predict_op, feed_dict={X: teX})
output = np.vectorize(fizz_buzz)(numbers, teY)

print(output)

interviewer: ...

me: And that should be your fizz buzz!

interviewer: Really, that's enough. We'll be in touch.
me: In touch, that sounds promising.

interviewer: ...

Postscript

| didn't get the job. So | tried actually running this (code on GitHub), and it turned out it got
some of the outputs wrong! Thanks a lot, machine learning!

In [185]: output

Out[185]:

array(['1', '2' izz', '4', 'buzz', 'fizz', '7', '8', 'fizz', 'buzz',
11, "13', '14', 'fizzbuzz', '16', '17', 'fizz', '19',
"buzz' ‘22", "2 fizz', 'buzz', '26', 'fizz', '28', '29',
"fizzb 1, 'f izz', '34', 'buzz', 'fizz', '37', '38',
"fizz', e , 41 '43', '44', 'fizzbuzz', '46', '47',
‘fizz', '49', 'buzz' , '52', 'fizz', 'fizz', 'buzz', '56',

‘fizz', '58', '59', 'T puzz', '61', '62', 'fizz', '64', 'buzz’,
‘fizz', '67', '68', '69', 'buzz', '71', 'fizz', '73', '74',
‘fizzbuzz', '76', '77', 'fizz', '79', 'buzz', '81', '82', '83',
‘84', 'buzz', '86', '87', '88', '89', 'fizzbuzz', '91', '92', '93',
'94', 'buzz', 'fizz', '97', '98', 'fizz', 'fizz'l],

dtype='<U8")

| guess maybe | should have used a deeper network.

Next:

* A walkthrough of various architectures (CNNs, RNNs, autoencoders,
GANs, Transformers, etc)
* Swappable architectural units
* Theory
* Application strengths and weaknesses

* Final project updates
* #1 is due a week from today! (March 27)

* #2 is due two weeks later (April 10)
* Final project presentations are the last week of class (April 22-24)

e Homeworks
e HW4 due March 31
* HW5 comes out March 31, due April 15

Questions?

\
\

 WEMUST GO DEEPER

References

* “Why is Deep Learning Taking Off?”
https://www.coursera.org/learn/neural-networks-deep-
learning/lecture/praGm/why-is-deep-learning-taking-off

* TensorFlow Playground http://playground.tensorflow.org/

* “My neural network isn’t working! What should | do?”
http://theorangeduck.com/page/neural-network-not-working

* “Don’t use deep learning, your data isn’t that big”
https://simplystatistics.org/2017/05/31/deeplearning-vs-leekasso/

* “Fizz Buzz in Tensorflow” http://joelgrus.com/2016/05/23/fizz-
buzz-in-tensorflow/

https://www.coursera.org/learn/neural-networks-deep-learning/lecture/praGm/why-is-deep-learning-taking-off
https://www.coursera.org/learn/neural-networks-deep-learning/lecture/praGm/why-is-deep-learning-taking-off
http://playground.tensorflow.org/
http://theorangeduck.com/page/neural-network-not-working
https://simplystatistics.org/2017/05/31/deeplearning-vs-leekasso/
http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/
http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/

