Biologically-Inspired
Computing I: Optimization

CSCl 4360/6360 Data Science Il

What is Optimization?

0" € arg min L(0)

* Formal: “Find a specific value of theta for which L is minimized”

* Colloquial: “Give me the parameters that result in the function’s
minimum”

Tried and true

e Where do we start?

9,

e Partial derivative (a’17 a’2)
. 00,1
 Set partial to zero

e Solve for the minimum

 Why doesn’t this work in modern ML? (even logistic regression!)

Automatic Differentiation

e Aka, “autodiff”

* Core to TensorFlow, Keras, PyTorch

AUTOMATIC DIFFERENTIATION WITH
TORCH.AUTOGRAD &

* Requires a computational graph
* Computes gradients during backpropagation

Stochastic Differentiation

* aka, Stochastic Gradient Descent (SGD)!
E [gt] — VOL(0)|97:

* The source of noise in this case: the data (or lack thereof)
* Partials w.r.t. a sample, or even a single data point

 Other versions to reduce the noise
* Preconditioned SGD
e Variance reduction

What do all these methods require?

* Plenty of other optimization strategies along these lines

* One thing they all share: require derivatives
* Requires the function we’re optimizing L to have an explicit or known form
* Requires evaluation of the derivative to be fairly inexpensive

 Are there alternatives? Yes

Derivative-free Optimization (DFO)

* Hill-climbing

* Stochastic local search

* Random search

e Optimal transport (e.g., Wasserstein)

* Today
e Simulated Annealing
e Evolutionary Algorithms
 Particle Swarm

Annealing

* Physical process of heating a solid until thermal stresses are released,
then cooling it (very slowly) until crystals are perfectly arranged
* Corresponds to a minimum energy state

* Define an energy function
pr(z) = exp(—&(z)/T)

 Temperature T is slowly decreased over time

Annealing

e A function we want to optimize

* Its corresponding energy function

T=10.00 T=2.00

Annealing

* Annealed versions of
the energy function at
different temperatures

* T>>>1, energy
landscape is flatter

* AsT->0, landscape
becomes sharper,
highlighting high-
probability global
extrema

(a) (b)

T=0.40 T=0.08

(c) (d)

Annealing

* The longer the experiment, the more
confident the annealing will be

* (Theoretically) Guaranteed to final
global optimum
* Run long enough
* Good cooling schedule
* etc

1.0 A

= probability

== temperature

—
-
——___

0.0 -

25
S 50
75

100

|
100

I
150

|
200

iteration

I
250

100

0.75
0.50

0.25

Evolutionary Algorithms (EA)

* Annealing = (technically) guaranteed to find global optimum
* EA = (technically) NOT guaranteed to find global optimum

* Lots of caveats, on both

* EA is a form of “stochastic local search”
» Balance exploitation (local search) and exploration (global search)

* Can find you a good local optimum quickly, with good chance of global
optimum in a reasonable time frame

Evolutionary / Genetic Algorithms

A1 (0]|o|0|o|00]||Gene A1

A2111(1]111(1]1 Chromosome A2

A3 [1{0|1[{0]|1(1

A5

Ad (1{1/0|1(1]0]| |Population

A6

Evolutionary / Genetic Algorithms

24748552

24 31%

32752411

23 29%

24415124

b

20 26%

/

32543213

11 14%

(a)

Initial Population

(b)

Fitness Function

32752411

24748552

>~

32752411

>~

24415124

©)

Selection

32748552

327481p2

24752411

24752411

32752124

32252124

24415411

(d)

Crossover

2441541[7]

(e)

Mutation

Evolutionary / Genetic Algorithms

GeEnNETIC ALrcorITEM Frow CHART

Initialize Population

Y

Done [~ Evaluation

Y

Selection

Y A

Crossover

Y

Mutation

Evolutionary / Genetic Algorithms

* One way to conceptualize EAs/GAs: search!

* Goal: find an optimal (or nearly-optimal) parameter combination
without having to evaluate all possible parameter values

* GA trade-offs exploration vs exploitation through population size,
number of generations, cross-over, mutation

Particle Swarm Optimization (PSO)

* The inspiration comes from
watching large swarms of E
birds or schools of fish .

. . . P
moving somewhat in unison, Lo et e
but with a few members {gw ' ‘
taking some unexpected {’3"-1';{5};_'
deviations. SRR T
. . w g\.’ .'m‘”}‘;’
* A single particle in PSO — i “s\\ it

'i ' rzﬁ :’
. LAY
3

<

compares well to a single
individual in EA

PSO: Exploration vs Exploitation

* Exploration: breadth over depth
* Trying out a large range of values quickly
e “Building an intuition” phase

* Exploitation: depth over breadth

e Zeroing in on a high-probability area
* “Deep dive” phase

* Pretty much every optimization strategy involves some trade-off

between these two

* If you notice your optimization procedure starting fast and then slowing
down, it’s shifting from exploration into exploitation

Particle Swarm Optimization

* Like EA, you have a population of particles

* Unlike EA, these particles remain the same
* Each particle tracks its own search progress
* Some global parameters to track
* Hyperparameters modulating the exploration/exploitation trade-off

* Some stochasticity (analogous to mutation) to prevent getting stuck

e Simulate

Particle Swarm Optimization

Generation 1 Generation 2 Generation 3

Generation 4 Generation 5 Generation 6

Advantages of Derivative-free methods

e Can optimize pretty much anything
* No need for a known or closed form derivative (“black box optimization”)
 Just need some way of evaluating whether or not a specific guess is “good”
(e.g., a fitness function)
 Straightforward to implement
* You implemented part of PSO in the midterm, theory in HW4 ©
* May still implement on a future HW

* Only real constraint (usually) is time
* Fairly resource-light, can scale up to use available resources

Disadvantages of Derivative-free methods

e Often no convergence guarantees
* EAis guaranteed to find a local optimum

* Annealing is theoretically guaranteed to find a global optimum (but could be
waiting until the heat death of the universe)
* Relies heavily on hand-tuned hyperparameters
* Temperature protocol, mutation rate, cognitive / social parameters
* “Long tail” convergence

e Can usually find a decent solution quickly, but optimal solutions may take a
very long time

Stay tuned

* More biologically inspired computing methods: neural networks!

References

* “Probabilistic Machine Learning”, by Kevin Murphy
https://probml.github.io/pml-book/

* Book 2: “Probabilistic Machine Learning: Advanced Topics”, ch. 6

https://probml.github.io/pml-book/

Quick Notes

 All grades are on elLC!
* Midterm (WITH +30 curve), HW1/2/3, and workshops (if you’ve given one)
* Should have a good idea of your standing in the course

* Still going through final project proposals
* A note about “dropping” the final project

* Final Project Update #1 is due THURSDAY, March 27
* Very similar to proposal: 1 page limit

* Discuss what you’ve done since proposal, any problems you’ve run into, and how
you’ve worked around them (or plan to work around them)

« Homework 4 is due MONDAY, March 31

