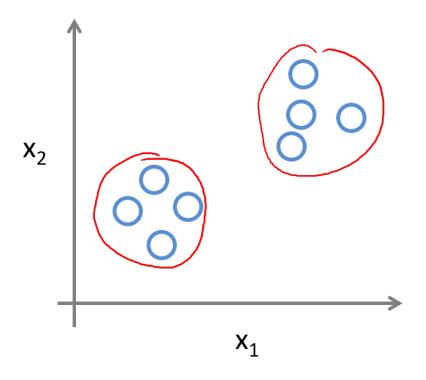

Semi-Supervised Learning

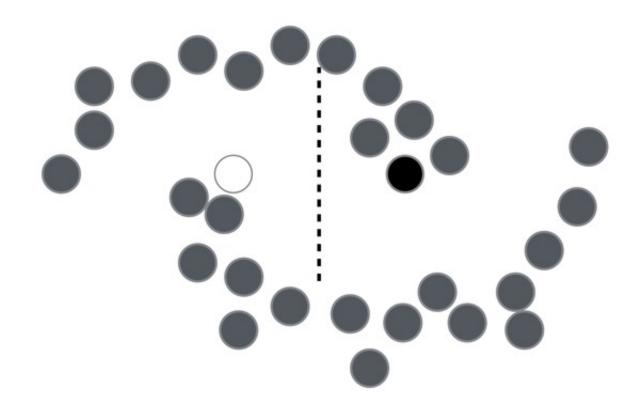
CSCI 4360/6360 Data Science II


Supervised learning

Supervised Learning

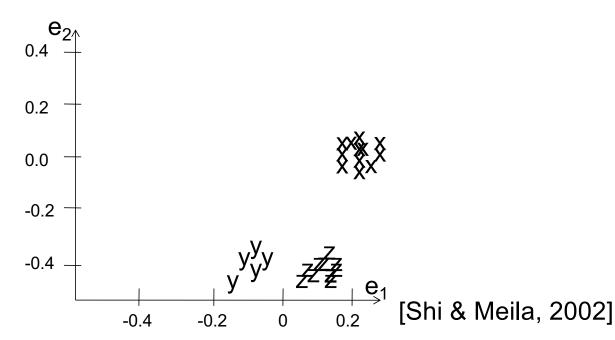
Unsupervised learning

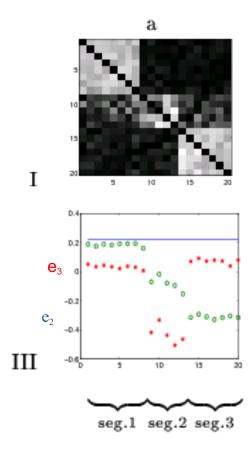
Unsupervised Learning



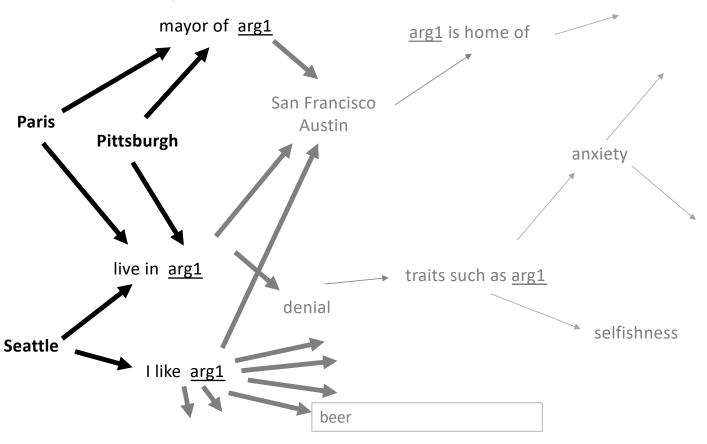
Semi-supervised learning

• Basically a hybrid!


- Given:
 - A pool of labeled examples L
 - A (usually larger) pool of unlabeled examples U
- Can you improve accuracy somehow using U?


Semi-supervised Learning

Spectral Clustering


- Graph = Matrix
 - W*v₁ = v₂ "propogates weights from neighbors"

Semi-Supervised Learning as Label Propagation on a Graph

- Propagate label to "nearby" nodes
 - X is "near" Y if there is a high probability of reaching Y from X
- Propagation methods
 - Personalized PageRank
 - Random walk
- Rewards multiple paths
- Penalizes longer and "high fanout" paths

Semi-Supervised Classification of Network Data Using Very Few Labels

Frank Lin
Carnegie Mellon University, Pittsburgh, Pennsylvania
Email: frank@cs.cmu.edu

William W. Cohen Carnegie Mellon University, Pittsburgh, Pennsylvania Email: wcohen@cs.cmu.edu

ASONAM-2010 (Advances in Social Networks Analysis and Mining)

MultiRankWalk

- Seed Selection
 - Order by PageRank or degree, or even randomly
 - Traverse list until you have k examples/class

$$\vec{r} = (1 - d)\vec{u} + dW\vec{r}$$

Given: A graph G = (V, E), corresponding to nodes in G are instances X, composed of unlabeled instances X^U and labeled instances X^L with corresponding labels Y^L , and a damping factor d.

Returns: Labels Y^U for unlabeled nodes X^U .

For each class c

- 1) Set $\mathbf{u}_i \leftarrow 1, \forall Y_i^L = c$
- 2) Normalize **u** such that $||\mathbf{u}||_1 = 1$
- 3) Set $R_c \leftarrow RandomWalk(G, \mathbf{u}, d)$

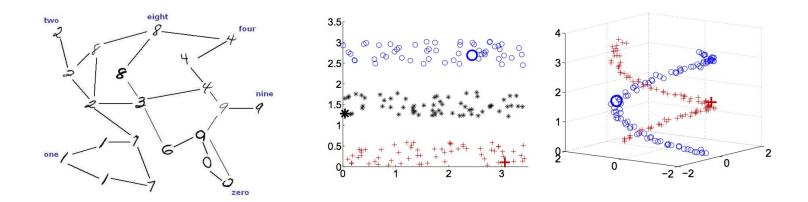
For each instance i

• Set $X_i^U \leftarrow argmax_c(R_{ci})$

Fig. 1. The MultiRankWalk algorithm.

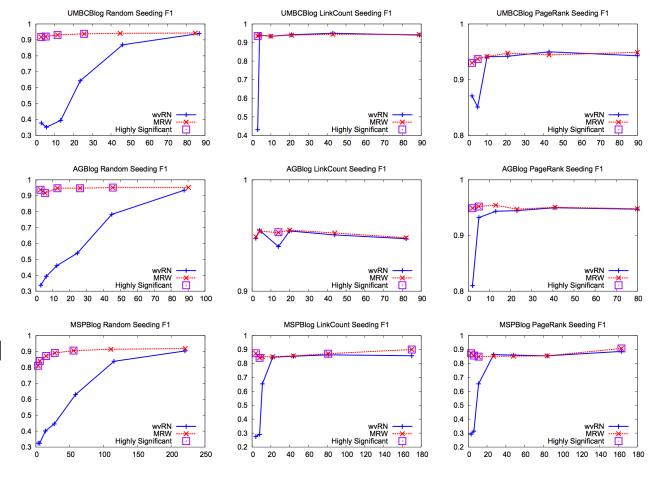
Comparison: wvRN

• One definition [MacSkassy & Provost, JMLR 2007]:...


Definition. Given $v_i \in \mathbf{V}^U$, the weighted-vote relational-neighbor classifier (wvRN) estimates $P(x_i|\mathcal{N}_i)$ as the (weighted) mean of the class-membership probabilities of the entities in \mathcal{N}_i :

$$P(x_i = c | \mathcal{N}_i) = \frac{1}{Z} \sum_{v_j \in \mathcal{N}_i} w_{i,j} \cdot P(x_j = c | \mathcal{N}_j),$$

- Does this look familiar?
- Homophily!

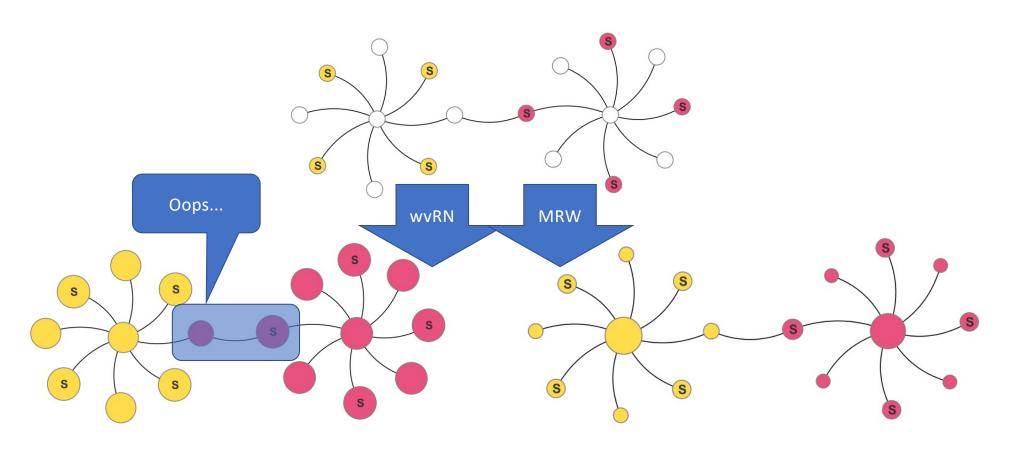

Comparison: HF

- Another definition in [X. Zhu, Z. Ghahramani, and J. Lafferty, ICML 2003]
- A **harmonic field** the score of each node in the graph is the harmonic, or linearly weighted, average of its neighbors' scores (harmonic field, HF)

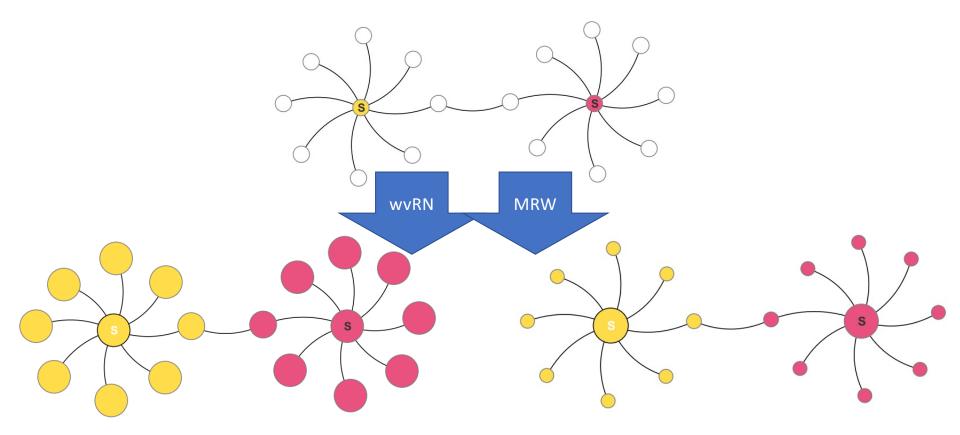
MRW versus wvRN

- MRW is easily the method to beat
- wvRN matches MRW only when seeding is not random
- Still takes a larger number of labeled instances compared to MRW

Why is MRW > wvRN?


- Start with wvRN & HF objectives
- (6.2) $P(x_i = c|N_i) = \frac{1}{Z} \sum_{v_j \in N_i} w_{i,j} \cdot P(x_j = c|N_j)$

- Do not account for graph structure
 - Or location of seeds


(6.3) $f(j) = \frac{1}{d_j} \sum_{i \ j} w_{i,j} f(i)$

- Graph-walk methods do not have these constraints
 - And directly account for graph structure

Why is MRW > wvRN?

Why is MRW > wvRN?

Modern SSL

- Graph Laplacians
 - Enforces graph structure
 - Imposes smoothness on labels
- Graph embeddings
 - "Embedding" ~ "context"
- Transductive -> Inductive
 - Transductive: learns the unlabeled data from the labeled data + structure
 - Inductive: generalizes to completely unobserved data

Graph Laplacians

Reformulate SSL objective as two distinct terms:

Weighted sum of supervised loss over *labeled* instances

$$f^{T}Lf = \frac{1}{2} \sum_{i,j} W_{ij} (f(i) - f(j))^{2}$$

$$J(f) = f^{T}Lf + \sum_{i=1}^{l} \lambda (f(i) - y_{i})^{2} = f^{T}Lf + (f - y)^{T}\Lambda (f - y)$$

Graph Laplacian regularization term

Graph Embeddings

 Remember word embeddings with word2vec?

Context!

$$-\sum_{(i,c)} \log p(c|i) = -\sum_{(i,c)} \left(\mathbf{w}_c^T \mathbf{e}_i - \log \sum_{c' \in \mathcal{C}} \exp(\mathbf{w}_{c'}^T \mathbf{e}_i) \right)$$

- Estimate "context" of each node with a random walk over neighborhood of a fixed window size
- Skipgram-based model, DeepWalk

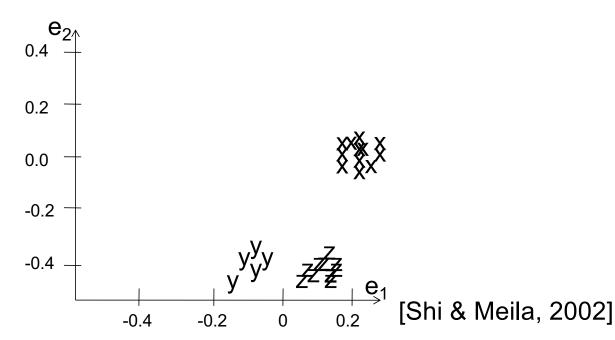
- C is set of all possible context
- w's are parameters of Skipgram
- e_i is embedding of node i

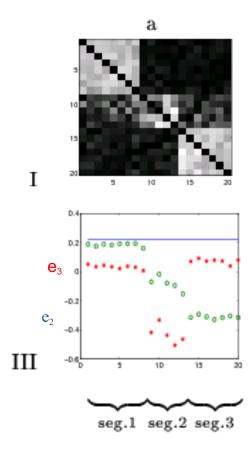
Inductive SSL

- You start with X^I (labeled) and X^U (unlabeled), hoping their combination will result in a superior model
- Semi-supervised learning yields predictions on X^U
 - Transductive learning
- What if a completely unobserved data point shows up?
 - Inductive learning—a concept often left out in SSL literature
- Convert your SSL framework to classification!

Transductive learning (note embeddings)

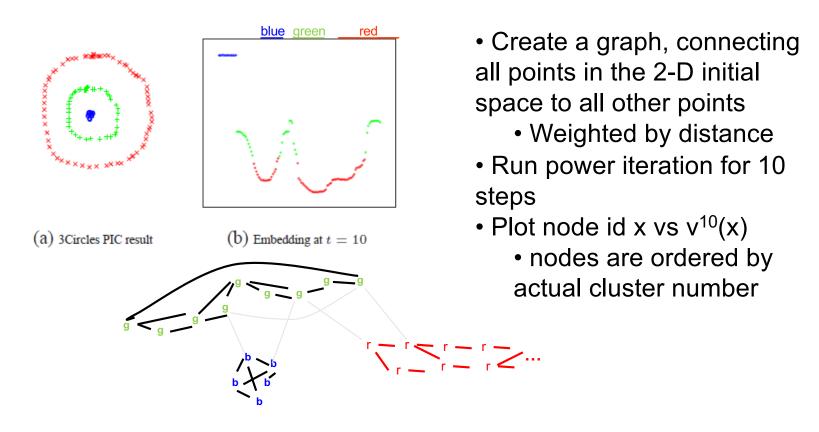
Inductive learning (dependent only on x)

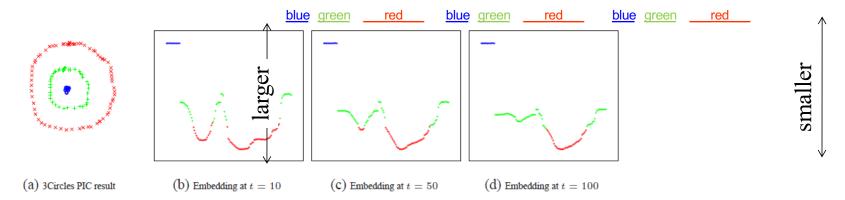

$$p(y|\mathbf{x}, \mathbf{e}) = \frac{\exp[\mathbf{h}^k(\mathbf{x})^T, \mathbf{h}^l(\mathbf{e})^T] \mathbf{w}_y}{\sum_{y'} \exp[\mathbf{h}^k(\mathbf{x})^T, \mathbf{h}^l(\mathbf{e})^T] \mathbf{w}_{y'}},$$

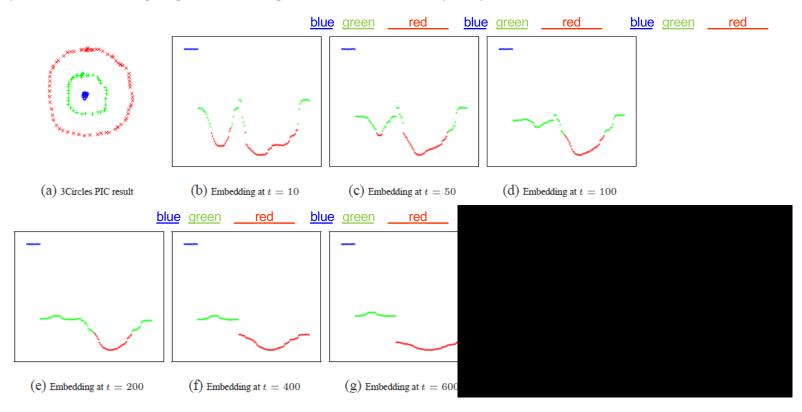

$$p(y|\mathbf{x}) = \frac{\exp[\mathbf{h}^k(\mathbf{x})^T, \mathbf{h}^l(\mathbf{x})^T] \mathbf{w}_y}{\sum_{y'} \exp[\mathbf{h}^k(\mathbf{x})^T, \mathbf{h}^l(\mathbf{x})^T] \mathbf{w}_{y'}}$$

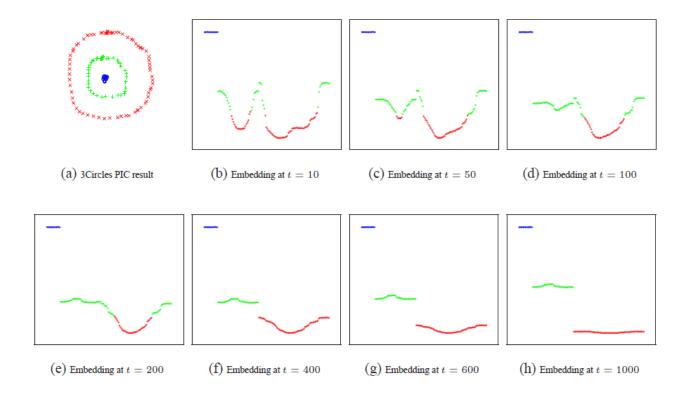
Quick digression to unsupervised learning...

Spectral Clustering

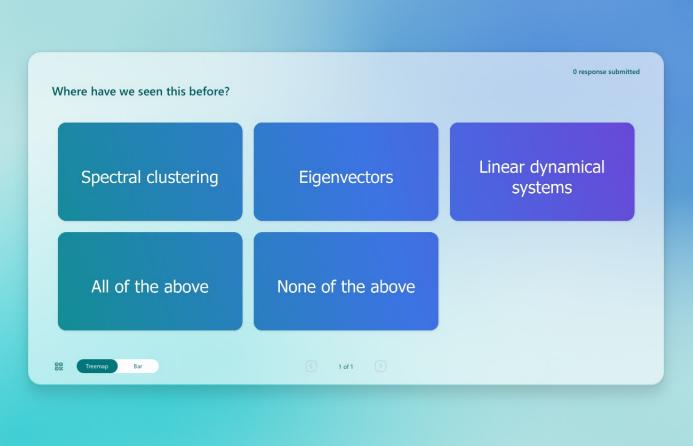

- Graph = Matrix
 - W*v₁ = v₂ "propogates weights from neighbors"






Repeated averaging with neighbors as a clustering method

- Pick a vector v⁰ (maybe at random)
- Compute $v^1 = Wv^0$
 - i.e., replace v⁰[x] with weighted average of v⁰[y] for the neighbors y of x
- Plot v¹[x] for each x
- Repeat for v^2 , v^3 , ...
- Variants widely used for semi-supervised learning
 - clamping of labels for nodes with known labels
- Without clamping, will converge to constant v^t
- What are the *dynamics* of this process?



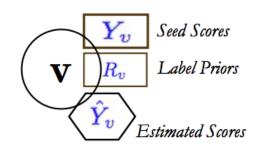
PIC: Power Iteration Clustering

- Run power iteration (repeated averaging w/ neighbors) with early stopping
 - 1. Pick an initial vector \mathbf{v}^0 .
 - 2. Set $\mathbf{v^{t+1}} \leftarrow \frac{W\mathbf{v^t}}{\|W\mathbf{v^t}\|_1}$ and $\delta^{t+1} \leftarrow |\mathbf{v^{t+1}} \mathbf{v^t}|$.
 - 3. Increment t and repeat above step until $|\delta^t \delta^{t-1}| \simeq 0$.
 - 4. Use k-means to cluster points on $\mathbf{v}^{\mathbf{t}}$ and return clusters $C_1, C_2, ..., C_k$.
- v⁰: random start, or "degree matrix" D, or others
- Easy to implement, and relatively efficient (& easily parallelized!)
- Empirically, often **better** than traditional spectral methods
 - Surprising given embedded space is 1-dimensional!

Summary

- Contrast semi-supervised learning with supervised and unsupervised
 - Goal is not simply to train on labeled data and test on unlabeled data, but to develop a better model with both than would have been possible with either
- Multi-rank Walk (MRW)
 - Works much like PageRank: walks the graph to infer unknown labels
- Modern SSL strategies use the Laplacian of the graph
 - Yes, even in deep neural networks
- Transductive vs Inductive SSL
- Power iteration clustering (PIC)
 - Works on same principle as MRW
 - Similarity with spectral clustering

References

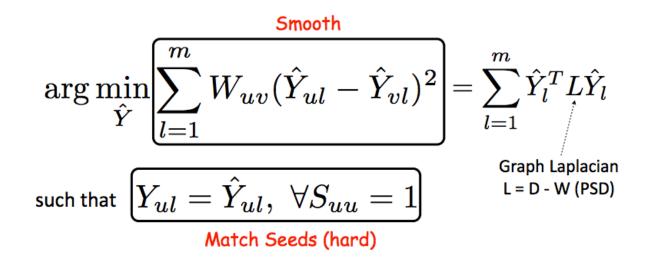

- "Semi-Supervised Classification of Network Data Using Very Few Labels", https://lti.cs.cmu.edu/sites/default/files/research/reports/2009/cmulti090

 17.pdf
- "New Regularized Algorithms for Transductive Learning", http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.220.42&rep=rep1&type=pdf
- "Semi-supervised Learning in Gigantic Image Collections", <u>http://papers.nips.cc/paper/3633-semi-supervised-learning-in-gigantic-image-collections.pdf</u>
- "Revisiting Semi-Supervised Learning with Graph Embeddings", http://proceedings.mlr.press/v48/yanga16.pdf

Notations

 $\hat{Y}_{v,l}$: score of estimated label I on node v

 $Y_{v,l}$: score of seed label I on node v

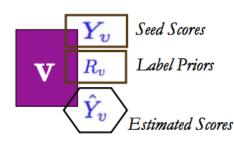


 $R_{v,l}$: regularization target for label I on node ${\sf v}$

S: seed node indicator (diagonal matrix)

 W_{uv} : weight of edge (u, v) in the graph

LP-ZGL (Zhu et al., ICML 2003)


- Smoothness
 - two nodes connected by an edge with high weight should be assigned similar labels
- Solution satisfies harmonic property

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

$$\arg\min_{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1} \left[\|\boldsymbol{S}\hat{\boldsymbol{Y}}_{l} - \boldsymbol{S}\boldsymbol{Y}_{l}\|^{2} + \mu_{1} \sum_{u,v} \boldsymbol{M}_{uv} (\hat{\boldsymbol{Y}}_{ul} - \hat{\boldsymbol{Y}}_{vl})^{2} + \mu_{2} \|\hat{\boldsymbol{Y}}_{l} - \boldsymbol{R}_{l}\|^{2} \right]$$

- m labels, +1 dummy label
- $M = W^{\dagger} + W'$ is the symmetrized weight matrix
- $\hat{\boldsymbol{Y}}_{vl}$: weight of label l on node v
- \boldsymbol{Y}_{vl} : seed weight for label l on node v
- S: diagonal matrix, nonzero for seed nodes
- \mathbf{R}_{vl} : regularization target for label l on node v

Modified Adsorption (MAD)

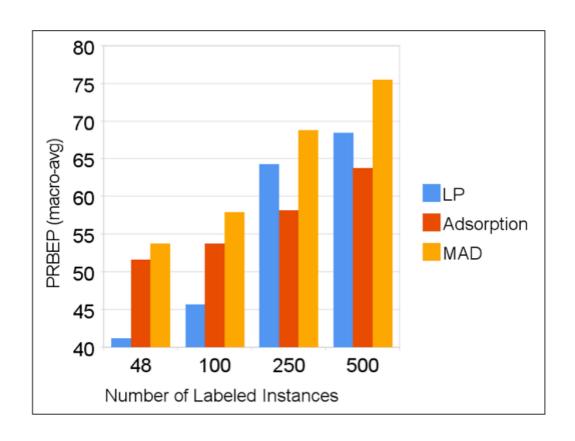
[Talukdar and Crammer, ECML 2009]

$$\arg\min_{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1} \left[\|\boldsymbol{S}\hat{\boldsymbol{Y}}_{l} - \boldsymbol{S}\boldsymbol{Y}_{l}\|^{2} + \mu_{1} \sum_{u,v} \boldsymbol{M}_{uv} (\hat{\boldsymbol{Y}}_{ul} - \hat{\boldsymbol{Y}}_{vl})^{2} + \mu_{2} \|\hat{\boldsymbol{Y}}_{l} - \boldsymbol{R}_{l}\|^{2} \right]$$

How to do this minimization?

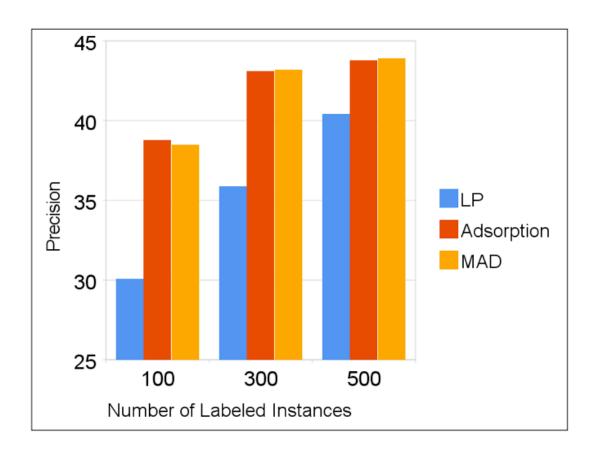
First, differentiate to find min is at

$$(\mu_1\mathbf{S} + \mu_2\mathbf{L} + \mu_3\mathbf{I}) \ \hat{\mathbf{Y}}_l = (\mu_1\mathbf{S}\mathbf{Y}_l + \mu_3\mathbf{R}_l) \ .$$

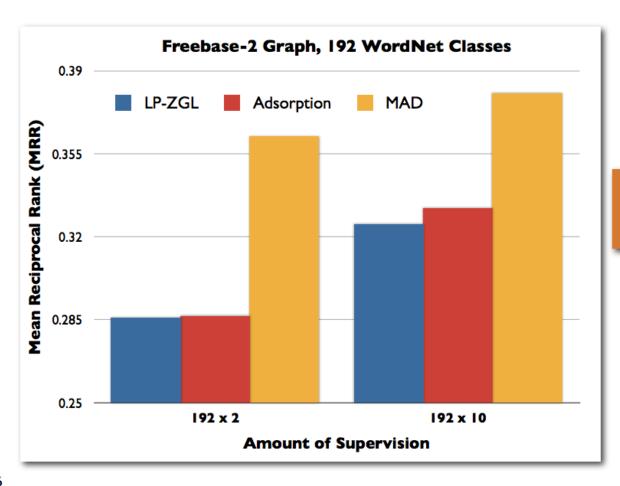

Jacobi method:

- To solve Ax=b for x
- Iterate: $\mathbf{x}^{(k+1)} = D^{-1}(\mathbf{b} R\mathbf{x}^{(k)}).$
- ... or: $x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i \sum_{j \neq i} a_{ij} x_j^{(k)} \right), \quad i = 1, 2, \dots, n.$

```
Inputs oldsymbol{Y}, oldsymbol{R}: |V| 	imes (|L|+1), \ oldsymbol{W}: |V| 	imes |V|, \ oldsymbol{S}: |V| 	imes |V| \ \operatorname{diagonal} \\ \hat{oldsymbol{Y}} \leftarrow oldsymbol{Y} \\ oldsymbol{M} = oldsymbol{W}' + oldsymbol{W}'^{\dagger} \\ Z_v \leftarrow oldsymbol{S}_{vv} + \mu_1 \sum_{u \neq v} oldsymbol{M}_{vu} + \mu_2 \quad \forall v \in V \\ \mathbf{repeat} \\ \quad \mathbf{for \ all} \ v \in V \ \mathbf{do} \\ \quad \hat{oldsymbol{Y}}_v \leftarrow \frac{1}{Z_v} \left( (oldsymbol{S} oldsymbol{Y})_v + \mu_1 oldsymbol{M}_{v.} \hat{oldsymbol{Y}} + \mu_2 oldsymbol{R}_v \right) \\ \quad \mathbf{end \ for} \\ \quad \mathbf{until} \ \mathbf{convergence} \\ \end{array}
```


- Extends Adsorption with well-defined optimization
- Importance of a node can be discounted
- Easily Parallelizable: Scalable

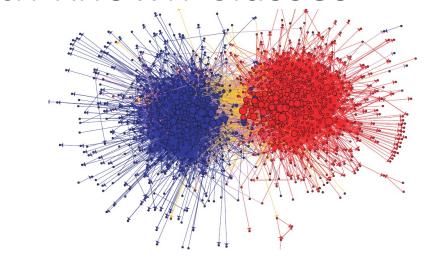
Text Classification


PRBEP (macro-averaged) on WebKB Dataset, 3148 test instances

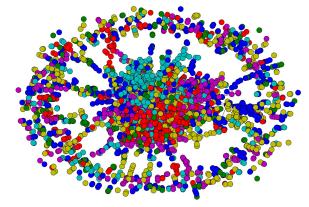
Sentiment Classification

Precision on 3568 Sentiment test instances

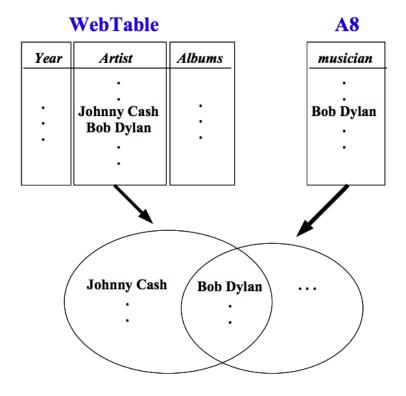
Class-Instance Acquisition

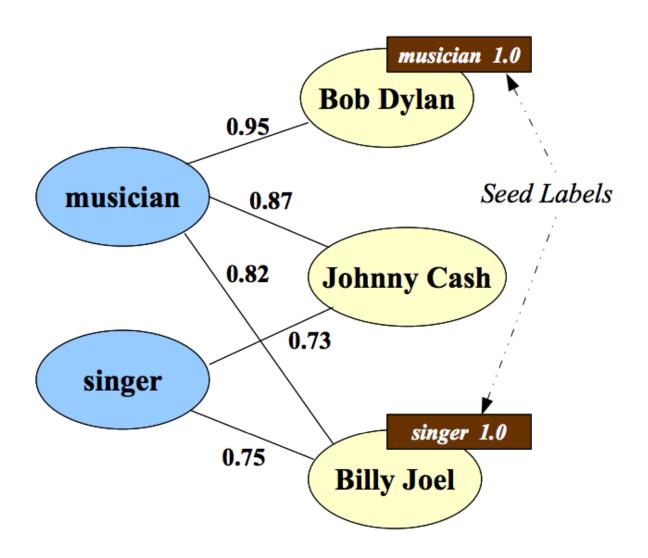



Graph with 303k nodes, 2.3m edges.


Network Datasets with Known Classes

- UBMCBlog
- AGBlog
- MSPBlog
- Cora
- Citeseer


	Nodes	Edges	Density
UMBCBlog	404	2725	0.01670
AGBlog	1222	19021	0.01274
MSPBlog	1031	9316	0.00876
Cora	2485	5209	0.00084
CiteSeer	2110	3757	0.00084



Assigning class labels to WebTable instances

Score (musician, Johnny Cash) = 0.87

New (Class, Instance) Pairs Found

Class	A few non-seed Instances found by Adsorption
Scientific Journals	Journal of Physics, Nature, Structural and Molecular Biology, Sciences Sociales et sante, Kidney and Blood Pressure Research, American Journal of Physiology-Cell Physiology,
NFL Players	Tony Gonzales, Thabiti Davis, Taylor Stubblefield, Ron Dixon, Rodney Hannan,
Book Publishers	Small Night Shade Books, House of Ansari Press, Highwater Books, Distributed Art Publishers, Cooper Canyon Press,

Total classes: 908