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High Dimensional Data

• Given a cloud of data points we want to understand its structure
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The Problem of Clustering

• Given a set of points, with a notion of distance between points, 
group the points into some number of clusters, so that 

• Members of a cluster are close/similar to each other
• Members of different clusters are dissimilar

• Usually: 
• Points are in a high-dimensional space
• Similarity is defined using a distance measure

• Euclidean, Cosine, Jaccard, edit distance, …

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org

3



Example: Clusters & Outliers
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Clustering is a hard problem!
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Why is it hard?

• Clustering in two dimensions looks easy
• Clustering small amounts of data looks easy
• And in most cases, looks are not deceiving

• Many applications involve not 2, but 10 or 10,000 dimensions
• High-dimensional spaces look different: Almost all pairs of points are 

at about the same distance
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Curse of dimensionality

• “Vastness” of Euclidean space

http://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_192



Clustering Problem: Galaxies

• A catalog of 2 billion “sky objects” represents objects by their 
radiation in 7 dimensions (frequency bands)
• Problem: Cluster into similar objects, e.g., galaxies, nearby stars, 

quasars, etc.
• Sloan Digital Sky Survey
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Clustering Problem: Music

• Intuitively: Music divides into categories, and customers prefer a 
few categories

• But what are categories really?

• Represent a song by a set of customers who bought it:

• Similar songs have similar sets of customers, and vice-versa
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Clustering Problem: Music

Space of all music:
• Think of a space with one dimension for each customer

• Values in a dimension may be 0 or 1 only
• A song is a point in this space (x1, x2,…, xk), 

where xi = 1 iff the i th customer bought the song

• For Amazon, the dimension is tens of millions

• Task: Find clusters of similar songs
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Clustering Problem: Documents

Finding topics:
• Represent a document by a vector  

(x1, x2,…, xk), where xi = 1 iff the i th word 
(in some order) appears in the document

• It actually doesn’t matter if k is infinite; i.e., we don’t limit the set of words

• Documents with similar sets of words 
may be about the same topic
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Cosine, Jaccard, and Euclidean

• As with songs we have a choice when we think of documents as sets 
of words or shingles:

• Sets as vectors: Measure similarity by the cosine distance
• Sets as sets: Measure similarity by the Jaccard distance
• Sets as points: Measure similarity by Euclidean distance
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Overview: Methods of Clustering

• Hierarchical:
• Agglomerative (bottom up):
• Initially, each point is a cluster
• Repeatedly combine the two 

“nearest” clusters into one
• Divisive (top down):

• Start with one cluster and recursively split it

• Point assignment:
• Maintain a set of clusters
• Points belong to “nearest” cluster
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Hierarchical Clustering

• Key operation: 
Repeatedly combine 
two nearest clusters

• Three important questions:
• 1) How do you represent a cluster of more 

than one point?
• 2) How do you determine the “nearness” of clusters?
• 3) When to stop combining clusters?
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Hierarchical Clustering

• Key operation: Repeatedly combine two nearest clusters
• (1) How to represent a cluster of many points?

• Key problem: As you merge clusters, how do you represent the “location” of 
each cluster, to tell which pair of clusters is closest?

• Euclidean case: each cluster has a 
centroid = average of its (data)points
• (2) How to determine “nearness” of clusters?

• Measure cluster distances by distances of centroids
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Example: Hierarchical clustering
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And in the Non-Euclidean Case?

What about the Non-Euclidean case?
• The only “locations” we can talk about are the points themselves

• i.e., there is no “average” of two points

• Approach 1:
• (1) How to represent a cluster of many points?
clustroid  = (data)point “closest” to other points

• (2) How do you determine the “nearness” of clusters? Treat clustroid as if it 
were centroid, when computing inter-cluster distances
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“Closest” Point?

• (1) How to represent a cluster of many points?
clustroid  = point “closest” to other points
• Possible meanings of “closest”:

• Smallest maximum distance to other points
• Smallest average distance to other points
• Smallest sum of squares of distances to other points

• For distance metric d clustroid c of cluster C is:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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Defining “Nearness” of Clusters

• (2) How do you determine the “nearness” of clusters? 
• Approach 2: 

Intercluster distance = minimum of the distances between any two points, 
one from each cluster

• Approach 3:
Pick a notion of “cohesion” of clusters, e.g., maximum distance from the 
clustroid

• Merge clusters whose union is most cohesive
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Cohesion

• Approach 3.1: Use the diameter of the merged cluster = maximum 
distance between points in the cluster
• Approach 3.2: Use the average distance between points in the cluster
• Approach 3.3: Use a density-based approach

• Take the diameter or avg. distance, e.g., and divide by the number of points in 
the cluster

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org

20



Implementation

• Naïve implementation of hierarchical clustering:
• At each step, compute pairwise distances 

between all pairs of clusters, then merge
• O(N3)

• Careful implementation using priority queue can reduce time to O(N2 
log N)

• Still too expensive for really big datasets 
that do not fit in memory

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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k–means Algorithm(s)

• Assumes Euclidean space/distance

• Start by picking k, the number of clusters

• Initialize clusters by picking one point per cluster
• Example: Pick one point at random, then  k-1 other points, each as far away 

as possible from the previous points

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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Populating Clusters

• 1) For each point, place it in the cluster whose current centroid it is 
nearest

• 2) After all points are assigned, update the locations of centroids of 
the k clusters

• 3) Reassign all points to their closest centroid
• Sometimes moves points between clusters

• Repeat 2 and 3 until convergence
• Convergence: Points don’t move between clusters and centroids stabilize

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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Getting the k right

How to select k?
• Try different k, looking at the change in the average distance to 

centroid as k increases
• Average falls rapidly until right k, then changes little

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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Getting the k right



Problems with the elbow method

• Heuristic with absolutely no theoretical support
• Easy to draw very poor conclusions
• Better alternatives have existed in the literature



Alternatives to the elbow method

• Distance-based criteria
• Compare diameter of clusters to cluster separation
• Silhouette width measure

• Information-theoretic criteria
• Minimum description length
• Trade-off between “compactness” of clusters vs number of clusters

• Simulation-based criteria
• “Gap” statistic: estimate a baseline error from randomized clustering, then 

choose a k that obtains a minimum relative error (i.e. largest gap)
• Very sensitive to data preprocessing—authors recommend previous methods



Example: Picking k

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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Example: Picking k
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Example: Picking k
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More K-means examples

• http://www.naftaliharris.com/blog/visualizing-k-means-clustering/

http://www.naftaliharris.com/blog/visualizing-k-means-clustering/


Graph Partitioning

• Undirected graph 

• Bi-partitioning task:
• Divide vertices into two disjoint groups 

• Questions:
• How can we define a “good” partition of ?
• How can we efficiently identify such a partition?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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Graph Partitioning

• What makes a good partition?
• Maximize the number of within-group 

connections
• Minimize the number of between-group connections

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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A B

Graph Cuts

• Express partitioning objectives as a function of the “edge cut” of the 
partition
• Cut: Set of edges with only one vertex in a group:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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Graph Cut Criterion

• Criterion: Minimum-cut
• Minimize weight of connections between groups

• Degenerate case:

• Problem:
• Only considers external cluster connections
• Does not consider internal cluster connectivity

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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Graph Cut Criteria

• Criterion: Normalized-cut [Shi-Malik, ’97]
• Connectivity between groups relative to the density of each group

 : total weight of the edges with at least 
one endpoint in : 

n Why use this criterion?
n Produces more balanced partitions

• How do we efficiently find a good partition?
• Problem: Computing optimal cut is NP-hard

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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Spectral Graph Partitioning

• A: adjacency matrix of undirected G
• Aij =1 if  is an edge, else 0

• x is a vector in Ân with components 
• Think of it as a label/value of each node of 

• What is the meaning of A× x?

• Entry yi is a sum of labels xj of neighbors of i
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org
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What is the meaning of Ax?

• jth coordinate of A× x : 
• Sum of the x-values of neighbors of j
• Make this a new value at node j

• Spectral Graph Theory:
• Analyze the “spectrum” of matrix representing 
• Spectrum: Eigenvectors  of a graph, ordered 

by the magnitude (strength) of their 
corresponding eigenvalues :

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org

38

𝑨 ⋅ 𝒙 = 𝝀 ⋅ 𝒙



Matrix Representations

• Adjacency matrix (A):
• n´ n matrix
• A=[aij], aij=1 if edge between node i and j

• Important properties: 
• Symmetric matrix
• Eigenvalues are real
• Eigenvectors are orthogonal

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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Matrix Representations

• Degree matrix (D):
• n´ n  diagonal matrix
• D=[dii], dii = degree of node i
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Matrix Representations

• Laplacian matrix (L):
• n´ n symmetric matrix

• Important properties:
• Eigenvalues are non-negative real numbers
• Eigenvectors are real and orthogonal
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Spectral Clustering

• Graph = Matrix
• W*v1 = v2 “propogates weights from neighbors”

[Shi & Meila, 2002]
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Spectral Clustering

• If W is connected but roughly block 
diagonal with k blocks, then
• the top eigenvector is a constant 

vector 
• the next k eigenvectors are roughly 

piecewise constant with “pieces” 
corresponding to blocks 



Spectral Clustering

• Outline of the algorithm:

1. Start with (ideally) block-diagonal A
2. Compute L = D - A
3. Find the top k+1 eigenvectors v1,…,vk+1 of L
4. Discard the “top” one v1 (the “trivial pair”)
5. Replace original data with k-dimensional vector xa = <v2(a),…,vk+1 (a)>
6. Cluster with k-means



Example: Spectral Partitioning

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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Example: Spectral Partitioning
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Example: Spectral partitioning
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k-Way Spectral Clustering

• How do we partition a graph into k clusters?

• Two basic approaches:
• Recursive bi-partitioning [Hagen et al., ’92]

• Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
• Disadvantages: Inefficient, unstable

• Cluster multiple eigenvectors [Shi-Malik, ’00]
• Build a reduced space from multiple eigenvectors
• Commonly used in recent papers
• A preferable approach…

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
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Why use multiple eigenvectors?

• Approximates the optimal cut [Shi-Malik, ’00]
• Can be used to approximate optimal k-way normalized cut

• Emphasizes cohesive clusters
• Increases the unevenness in the distribution of the data
• Associations between similar points are amplified, associations between 

dissimilar points are attenuated
• The data begins to “approximate a clustering”

• Well-separated space
• Transforms data to a new “embedded space”, 

consisting of k orthogonal basis vectors
• Multiple eigenvectors prevent instability due to information loss

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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More terms

• If A is an adjacency matrix (maybe weighted) and D is a (diagonal) 
matrix giving the degree of each node
• Then Lu = D - A is the (unnormalized) Laplacian

• W=AD-1 is a probabilistic adjacency matrix

• Ln = I - D-1/2AD-1/2 is the (normalized or random-walk) Laplacian
• The largest eigenvectors of W correspond to the smallest eigenvectors 

of Ln
• So sometimes people talk about “bottom eigenvectors of the Laplacian”
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Spectrum from Data



Similarity Graphs for Spectral Clustering





Spectral Clustering: Pros and Cons

• Elegant, and well-founded mathematically
• Works quite well when relations are approximately transitive (like 

similarity)
• Does not assume any form of the data (compare to K-means)
• Very noisy datasets cause problems

• “Informative” eigenvectors need not be in top few
• Performance can drop suddenly from good to terrible

• Expensive for very large datasets
• Computing eigenvectors is the bottleneck



Use cases and runtimes

• K-Means
• Fast
• “Embarrassingly parallel”
• Not very useful on anisotropic 

data

• Spectral clustering
• Excellent quality under many 

different data forms
• Much slower than K-Means
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