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July 12,2017

1 Lecture 16: Data Exploration

CSCI 1360E: Foundations for Informatics and Analytics
http:/ /www.unofficialgoogledatascience.com /2016 /10/practical-advice-for-analysis-of-
large.html

1.1 Overview and Objectives

We’ve previously covered the basics of exploring data. In this lecture, we’ll go into a bit more
detail of some of the slightly more formal strategies of "data munging," including introducing the
pandas DataFrame for organizing your data. By the end of this lecture, you should be able to

* Generate histograms and plots for exploring 1D and 2D data
* Rescale and normalize data to more directly compare different distributions
¢ Import data into pandas DataFrames and perform basic analyses

1.2 Part 1: Exploring

One particularly important skill that all data scientists must have is the ability to explore your
data.

If I told you to go build me a Facebook friend recommendation system, you would (rightfully)
look at me like I'd gone crazy, not the least of which is because I hadn't given you any of the data you
would be using to actually make recommendations to users.

It may seem trite, but it’s incredibly important: you have to understand your data before you
can ever begin to start thinking about how to put it to use. - You can’t write a friend recommenda-
tion system without ever seeing a single data point. - You can’t build a facial recognition plug-in
for Instagram without first seeing some example images. - You can’t write a speech transcription
application for iPhone voicemails without accessing some recorded messages.

What kinds of patterns exist in the data that you can take advantage of? What unexpected
properties do the data have that you'll have to account for? What assumptions can you make?
What assumptions can’t you make?

These are all points that require you to explore your data--doing some basic poking and prod-
ding to get a feel for your data.

1.2.1 One dimension

This is about as simple as it gets: your data consist of a list of numbers. We saw in previous
lectures that you can compute statistics (mean, median, variance, etc) on these numbers. You can
also visualize them using histograms. We’ll reiterate that point here, using a particular example.



In [1]:

import numpy as np
np.random.seed (3908544)

# Generate two random datasets.
datal = np.random.normal(loc = 0, scale = 58, size = 1000)
data2 = 200 * np.random.random(1000) - 100

# What are their means and variances?
print("Dataset 1 average: {:.2f} (+/- {:.2f})".format(datal.mean(), datal.std()))
print("Dataset 2 average: {:.2f} (+/- {:.2f})".format(data2.mean(), data2.std()))

Dataset 1 average: 1.60 (+/- 57.68)
Dataset 2 average: 1.88 (+/- 57.92)

Both datasets contain 1000 random numbers. Both datasets have very nearly the same mean
and same standard deviation.
But the two datasets look very different!

In [2]:

Jmatplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure() .set_figwidth(12)
plt.subplot(121)
plt.title("Dataset 1")

_ = plt.hist(datal, bins
plt.subplot(122)
plt.title("Dataset 2")

= plt.hist(data2, bins = 20, range = (-100, 100))
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Behold: the importance of viewing your data! Dataset 1 is drawn from a Gaussian / Normal
distribution (our good friend, the bell curve), while Dataset 2 is uniform--meaning the data are
spread evenly between two values (-100 and 100, in this case), rather than clustered around the
middle like the bell curve.

1.2.2 Two dimensions

Two (and even three) dimensions? Scatter plots are your friend. Consider the following fake
datasets.

In [3]: np.random.seed(8493248)

X = np.random.normal(size = 1000)
Y1 = (X + np.random.normal(size = 1000) / 2)
Y2 = (-X + np.random.normal(size = 1000) / 2)

If you plotted Y1 and Y2 using the histograms from the previous strategy, you'd get two
datasets that looked pretty much identical.

In [4]: plt.figure().set_figwidth(12)
plt.subplot(121)
plt.title("Dataset Y1")
_ = plt.hist(Y1, bins = 50, range = (-4, 4))
plt.subplot(122)
plt.title("Dataset Y2")

= plt.hist(Y2, bins = 50, range = (-4, 4))

Dataset Y1 Dataset ¥2

Maybe slightly different shapes, but qualitatively (and statistically) identical.
But what if we visualized the data in 2D using a scatter plot?



I

In [5]: plt.scatter(X, Y1, marker ", ", color = "black", label = "Dataset 1")
plt.scatter(X, Y2, marker = ".", color = "gray", label = "Dataset 2")
plt.xlabel("X")
plt.ylabel("Y")
plt.legend(loc = 0)
plt.title("Joint Distribution")

Out[5]: <matplotlib.text.Text at 0x110691c50>
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DIFFERENT, again! But it required a different visualization / summarization technique to
discover.

These two datasets are anticorrelated. To see what this means, we can derive the correlation
coefficients for the two datasets independently:

In [6]: print(np.corrcoef (X, Y1)[0, 1])
print(np.corrcoef (X, Y2) [0, 1])

0.896816214735
-0.895177590207

"Correlation” means as we change one variable (X), another variable changes by a similar
amount (Y). Positive correlation means as we increase one variable, the other increases; negative
correlation means as we increase one variable, the other decreases.



Anticorrelation, then, is the presence of both positive and negative correlation, which is what
we see in this dataset: one has a correlation coefficient of 0.9 (1.0 is perfect positive correlation),
while the other is -0.9 (-1.0 is perfect negative correlation).

This is something we’d only know from either visualizing the data or examining how the
data are correlated.

Simpler strategies--means, medians, modes, standard deviations, and histograms--are all very
useful data exploration strategies, and you should definitely keep them handy!

But they have their limits, as we’ve already seen. Also exploring correlation, and using scatter
plots, in combination with the simpler strategies, will help you get a firmer handle on the behavior
of the data.

1.2.3 More than two dimensions

If you have 3D data, matplotlib is capable of displaying that. But beyond three dimensions, it can
get tricky. A good starting point is to make a correlation matrix, where the i’ row and j* column
of the matrix is the correlation coefficient between the i*" and j dimensions of the data.

Another strategy is to create 2D scatter plots of every pairwise combinations of dimensions.
For every i" and j dimension in the data, create a 2D scatter plot like we did in the last slide.
This way, you can visualize each dimensions relative to each other dimension and easily spot any
correlations.

These are pretty advanced techniques that we won’t explicitly cover here (though possibly
incidentally in later lectures). The upshot here is to find a way to visualize your data.

1.2.4 Beyond summary statistics

There’s an awesome article about data visualization that demonstrates precisely why summary
statistics, on their own, can be viciously misleading.

https:/ /flowingdata.com/2017/07/07 /small-summary-stats/

I particularly like the "Age" and "Family Size in Household" plots, because the averages shown
(the single dots) aren’t even the widest parts of the full plot.

¢ The average age shows as 37, but a plurality of people seem to be about +/- 10 years of that
number.

¢ The average size of a household is 3, but the plurality looks to be somewhere between 1 and
2.

Moral of the story: summary statistics are great and absolutely essential, but they almost
always require further visualization of the details!

1.3 Part 2: Rescaling

Many data science analysis techniques can be sensitive to the scale of your data. This is where
normalization or scaling your data can help immensely.

Let’s say you're interested in grouping together your friends based on height and weight. You
collect the following data points:

In [7]: personA = np.array([63, 150]) # 63 <nches, 150 pounds
personB = np.array([67, 160]) # 67 inches, 160 pounds



personC = np.array([70, 171]1) # 70 inches, 171 pounds

plt.scatter(personA[0], personA[1])
plt.scatter(personB[0], personB[1])
plt.scatter(personC[0], personC[1])

Out[7]: <matplotlib.collections.PathCollection at 0x11025c390>

]
170
165
160 [ ]
135
150 ]
i i) i) i) ar i) Liit) T

And you compute the "distance" between each point (we’ll just use standard Euclidean dis-
tance):

In [8]: import numpy.linalg as nla
print("A to B: {:.2f}".format( nla.norm(personA - personB) ))
print("A to C: {:.2f}".format( nla.norm(personA - personC) ))
print("B to C: {:.2f}".format( nla.norm(personB - personC) ))

A to B: 10.77
A to C: 22.14
B to C: 11.40

As you can see, the two closest data points are person A and person B (the distance of 10.77 is

the smallest).
But now your UK friend comes to you with the same dataset but a totally different conclusion!

Turns out, this friend computed the heights of everyone in centimeters, rather than inches, giving
the following dataset:



In [9]: personA = np.array([160.0, 150]1) # 160 cm, 150 pounds
personB = np.array([170.2, 160]) # 170.2 cm, 160 pounds
personC = np.array([177.8, 171]1) # 177.8 cm, 171 pounds

plt.scatter(personA[0], personA[1])
plt.scatter(personB[0], personB[1])
plt.scatter(personC[0], personC[1])

print("A to B: {:.2f}".format( nla.norm(personA - personB) ))
print("A to C: {:.2f}".format( nla.norm(personA - personC) ))
print("B to C: {:.2f}".format( nla.norm(personB - personC) ))

A to B: 14.28
A to C: 27.53
B to C: 13.37
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Check it out--according to these measurements, the smallest distance (i.e. most similar pair) is
13.37, which is persons B and C! Oops...?

It can be very problematic if a simple change of units completely alters the conclusions you
draw from the data. One way to deal with this is through scaling--we’ve actually done this before
in a homework assignment.

By rescaling the data, we eliminate any and all units. We remove the mean (subtract it off) and
divide by the standard deviation, so if you had to include a unit, it would essentially be units of
"standard deviations away from 0."



In [10]: # We'll write a function to help!
def rescale(data):
# First: subtract off the mean of each column.
data -= data.mean(axis = 0)

# Second: divide by the standard deviation of each column.
data /= data.std(axis = 0)

return data
Now we’ll generate some sample data, and then scale it.

In [11]: np.random.seed(3248)
X = np.random.random((5, 3)) # Five rows with three dimensions.

print("=== BEFORE ===")
print("Means: {F\nStds: {}".format(X.mean(axis = 0), X.std(axis = 0)))

=== BEFORE ===
Means: [ 0.4303258 0.53938706 0.52770194]
Stds: [ 0.17285592 0.27353295 0.23789391]

In [12]: Xs = rescale(X)

print ("=== AFTER ===")
print("Means: {}\nStds: {}".format(Xs.mean(axis = 0), Xs.std(axis = 0)))

Means: [ -2.66453526e-16 -6.66133815e-17 -4.44089210e-17]
Stds: [ 1. 1. 1.]

Of course, like anything (everything?), there are still caveats.

¢ There is an implicit assumption being made when you rescale your data: that your dimen-
sions are distributed like a Gaussian. If this is not true--or even worse, true for some dimen-
sions but not others--you risk creating more problems than you solve by putting dimensions
on "equal" footing that shouldn’t be.

* On the other hand, rescaling your data can do wonders to mitigate or even eliminate the
effects of outliers on your data. Rescaling will maintain relative distances (in terms of stan-
dard deviations) between dimensions, but will eliminate absolute differences that could just
be flukes.

* As always, be careful about numerical round-off errors. You'll notice none of the means in
the previous slide were exactly 0; this has to do with the precision of floating-point numbers
and this precise behavior can vary depending on what operating system you're using.



1.4 Part 3: DataFrames

DataFrames are a relatively new data structure on the data science scene. Equal parts spreadsheet,
database, and array, they are capable of handling rich data formats as well as having built-in
methods for dealing with the idiosyncrasies of unstructured datasets.

As Jake wrote in his book, Python Data Science Handbook:

NumPy’s ndarray data structure provides essential features for the type of clean, well-
organized data typically seen in numerical computing tasks. While it serves this pur-
pose very well, its limitations become clear when we need more flexibility (such as
attaching labels to data, working with missing data, etc.) and when attempting opera-
tions which do not map well to element-wise broadcasting (such as groupings, pivots,
etc.), each of which is an important piece of analyzing the less structured data available
in many forms in the world around us. Pandas [...] builds on the NumPy array struc-
ture and provides efficient access to these sorts of "data munging" tasks that occupy
most of a data scientist’s time."

What exactly is a DataFrame, then?
Well, it’s a collection of Series! </unhelpful>

In [13]: import pandas as pd # "pd" 4is the import convention, like "np" 4s for NumPy

In [14]: data = pd.Series([0.25, 0.5, 0.75, 1]1)
print(data)

0 0.25
1 0.50
2 0.75
3 1.00
dtype: float64

Think of a Series as a super-fancy 1D NumPy array. It’s so fancy, in fact, that you can give a
Series completely custom indices, sort of like a dictionary.

In [15]: data = pd.Series({2:'a', 1:'b', 3:'c'})

print(data)
1 b
2 a
3 c

dtype: object

If a Series is essentially a fancy 1D NumPy array, then a DataFrame is a fancy 2D array. Here’s
an example.

In [16]: # Standard Python dictionary, nothing new and exciting.
population_dict = {'California': 38332521,
'Texas': 26448193,



'New York': 19651127,
'Florida': 19552860,
'Illinois': 12882135}
population = pd.Series(population_dict) # Oh right: you can feed dicts to Series!

In [17]: area_dict = {'California': 423967,
'Texas': 695662,
'New York': 141297,
'Florida': 170312,
'Illinois': 149995}
area = pd.Series(area_dict)

In [18]: # Build the DataFrame!
states = pd.DataFrame({'population': population,
'area': areal)
print(states)

area population
California 423967 38332521
Florida 170312 19552860
Illinois 149995 12882135

New York 141297 19651127
Texas 695662 26448193

DataFrames are really nice--you can directly access all the extra information they contain.
In [19]: print(states.index) # Our row names

Index(['California', 'Florida', 'Illinois', 'New York', 'Texas'], dtype='object')

In [20]: print(states.columns) # Our Series / column names
Index(['area', 'population'], dtype='object')
You can also directly access the property you're interested in, rather than having to memorize
the index number as with NumPy arrays:
In [21]: print(states['population'])

California 38332521

Florida 19552860
Illinois 12882135
New York 19651127
Texas 26448193

Name: population, dtype: int64
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But you can also access the same information almost as you would with a NumPy array:
In [22]: print(states.iloc[:, 1])

California 38332521

Florida 19552860
Illinois 12882135
New York 19651127
Texas 26448193

Name: population, dtype: int64

Note the use of the .iloc attribute of DataFrames.

This is to handle the fact that you can assign entirely customized integer indices to DataFrames,
resulting in potentially confusing behavior when you slice them--if you slice with 1:3, are you
referring to the first and third items in the DataFrame, or the items you specifically indexed as the
tirst and third items? With DataFrames, these can be two different concepts!

* Use .iloc if you want to use implicit ordering, meaning the automatic Python internal or-
dering (a la NumPy arrays)

* Use .1loc if you want to use explicit ordering, or the ordering that you set when you built the
DataFrame (the order in which you gave the items to the DataFrame)

¢ Use .ix if you want a hybrid of the two (this is super-confusing)

If you just want the whipper-snappers to get off your lawn, don’t worry about this distinction.
Aslong as you don’t explicitly set the indices yourself when you build a DataFrame, just use iloc.

1.4.1 Missing data

So what do DataFrames have to do with data exploration?...besides making it really easy, of
course.

pandas has some phenomenal missing-data capabilities built-in to Series and DataFrames. As
an example by comparison, let’s see what happens if we have a None or NaN in our NumPy array
when we try to do arithmetic.

In [28]: x = np.array([0, 1, None, 2]) # Trust me when I say: this happens a LOT.
print(x.sum())

TypeError Traceback (most recent call last)

<ipython-input-28-9533350d1013> in <module>()
1 x = np.array([0, 1, None, 2]) # Trust me when I say: this happens a LOT.
----> 2 print(x.sum())

/opt/python/lib/python3.5/site-packages/numpy/core/ _methods.py in _sum(a, axis, dtype, o
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30

31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):
---> 32 return umr_sum(a, axis, dtype, out, keepdims)

33

34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False):

TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'

Welp, that crashed and burned. What about using NaN instead?

In [24]: x = np.array([0, 1, np.nan, 2])
print(x.sum())

nan

Well, it didn’t crash. But since "NaN" specifically stands for "Not A Number", it makes arith-
metic difficult since any operation involving a NaN will return NaN.

A Series has a bunch of tools available to us to sniffing out missing values and handling them
gracefully.

¢ isnull(): generate a boolean mask which indicates where there are missing values.

* notnull(): opposite of isnull().

* dropna(): return a version of the data that drops all NaN values.

e fillna(): returna copy of the data with NaN values filled in with something else or otherwise
imputed.

In [25]: data = pd.Series([1, np.nan, 'hello', Nonel)
print(data)

0 1
1 NaN
2 hello
3 None
dtype: object

In [26]: print(data.isnull()) # Where are the null indices?

0 False
1 True
2 False
3 True
dtype: bool

In [27]: new_data = datal[data.notnull()] # Use the boolean mask to pull out non-null indices.
print (new_data)
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0 1
2 hello
dtype: object

This is but a tiny taste of the majesty that is the pandas package. I highly recommend checking
it out further.

1.5 Review Questions

Some questions to discuss and consider:

1: What are the advantages and disadvantages of using pandas DataFrames instead of NumPy
arrays?

2: Name three strategies for visualizing and exploring 5-dimensional data. What are the pros
and cons of each?

3: You're putting your data science skills to work and writing a program that automatically
classifies web articles into semantic categories (e.g. sports, politics, food, etc). You start by count-
ing words, resulting in a model with 100,000 dimensions (words are dimensions!). Can you come
up with any kind of strategy for exploring these data?

1.6 Course Administrivia

¢ Assignment 7 was released yesterday! Any questions so far? Due Saturday!

* Assignment 8 out tomorrow, due next Monday!

1.7 Additional Resources

1. Grus, Joel. Data Science from Scratch, Chapter 10. 2015. ISBN-13: 978-1491901427

VanderPlas, Jake. Python Data Science Handbook, Chapter 4. 2015. ISBN-13: 978-1491912058

3. http://www.unofficialgoogledatascience.com /2016 /10/practical-advice-for-analysis-of-
large.html

4. https:/ /flowingdata.com/2017/07/07 /small-summary-stats /
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