
L21

July 24, 2017

1 Lecture 21: Open Data Science

CSCI 1360E: Foundations for Informatics and Analytics

1.1 Overview and Objectives

At this point, you’re ready to dive into data science headfirst. One of the best ways to learn more
about specific problems is to see how those problems have been addressed so far; reading through
existing code can help immensely. But this touches on an important and emerging area of science
called "Open Science." By the end of this lecture, you should be able to

• Define "open science" and its importance to scientific inquiry
• Recall the core strategies for reproducing and replicating results
• Package and release your Python code via distribution channels

1.2 Part 1: What is "Open Science"?

Simply put, Open Science is the movement to make all scientific data, methods, and materials
accessible to all levels of society.

Why is this a good thing?

• The vast majority of research is publicly funded; it would seem logical that the public have
access to it!

• Open and transparent research makes peer review and replication much easier.
• There is some convincing evidence that Open Science gives projects more downstream im-

pact in the scientific community

Nonetheless, there are some downsides to making everything openly available.

• The deluge of science will overwhelm already heavily-burdened researchers.
• The tools could be used for more nefarious purposes (a good example is a particularly viru-

lent strain of influenza that researchers were experimenting with a few years back that could
potentially be used as a bioweapon).

My opinion--as you’ve probably guessed by the title of the lecture--is that the benefits of good
Open Science practices outweigh the drawbacks, for the following reason:

I learn best when I can dig in and get my hands dirty.

1

Reading a paper or even a blog post that vaguely describes a method is one thing. Actually
seeing the code, changing it, and re-running it to observe the results is something else entirely
and, so I believe, is vastly superior in educational terms.

The scientific deluge is legitimate, though this was already happening even without the addi-
tion of open data, open access, and open source. And it would seem that, while we do absolutely
need to exercise caution in our research and not pursue the ends by any means necessary, sci-
ence is the pursuit of knowledge for its own sake and that should also be respected to the highest
degree.

To that end, there are six main themes that comprise the Open Science guidelines.

1. Open data: all data used in the project should be made available.
2. Open source: all code written in the project should be publicly available.
3. Open methods: the exact procedure of the project is publicly documented.
4. Open review: correspondence between reviewers and authors is public.
5. Open access: resulting publications are publicly available.
6. Open education: all education materials are publicly available.

1.2.1 1: Open Data

If you had to pick the "core" of Open Science, this would probably be it. All of the data used in
your study and experiments are published online.

This is definitely a shift from prior precedent; most raw data from scientific experiments re-
main cloistered.

The situation is further complicated by Terms of Service agreements that prohibit the sharing
of data collected. For example: if you hooked up a Python client to listen to and capture public
Twitter posts, you are forbidden from sharing the Twitter data publicly. Which seems odd, given
that the data are public anyway, but there you go.

Repositories and online data banks have sprung up around this idea. Many research institu-
tions host their own open data repositories, as do some large tech companies.

• CERN, the organization behind the Large Hadron Collider, has posted its data online:
http://opendata.cern.ch/about/CMS

• Amazon has released its own set of large public datasets: https://aws.amazon.com/public-
data-sets/

• DataHub is a general-purpose repository for anyone to submit their own datasets.
https://datahub.io/en/dataset

1.2.2 2: Open Source

This is probably the part you’re most familiar with. Any (and all) code that’s used in your project
is published somewhere publicly for download.

There are certainly conditions where code can’t be fully open sourced--proprietary corporate
secrets, pending patents, etc--but to fully adhere to Open Science, the code has to be made com-
pletely available for anyone.

Like with open data, there are numerous repositories across the web that specialize in provid-
ing publicly-available versioning systems for both maintaining and publishing your code.

• GitHub is easily the most popular, and is where the materials for this course are published!
https://github.com/

2

• BitBucket is another option that also uses git to manage team codebases
https://bitbucket.org/

• SourceForge is one of the oldest and most well-known online repositories
https://sourceforge.net/

1.2.3 3: Open Methods

This is probably the trickiest item. How does one make methods reproducible?
Open source code is part of it, but even more important is the effort put into making the

methods in the code understandable. This takes several forms:

• Documentation, both as accompanying doc files (e.g. JavaDoc) as well as in-code comments

• Proofs of the methods devised if they’re novel, or references to their original sources

• Pre-packaged examples that will run with little or no prior configuration on the user’s part

• Self-contained virtual container scripts that satisfy all the prerequisites (more on this later)

One good example of making sure your code documentation is up to par is Continuum IO’s
new automated README generator, kapsel.

1.2.4 4: Open Review

The cornerstone of the scientific process is that of peer review: your peers, your colleagues, your
fellow researchers should vet your work before it’s officially included as part of the scientific
literature.

However, this process is fraught with ambiguity and opacity. Conflicts of interest can poten-
tially lead to biased reviews (if you’re reviewing the paper of a competitor, it isn’t exactly in your
best interest to go easy on them), and it can be difficult to assess a published paper in the public
sphere without a trail of edits from which to begin.

Online open review journals such as The Journal of Open Source Software (JOSS) have be-
gun proliferating to address this shortcoming.

Reviews essentially take the form of GitHub tickets, and researchers in the field can discuss
and debate the merits of the work in an open forum.

1.2.5 5: Open Access

Once a project is published, the paper should be made publicly available for anyone, anywhere to
download and read for themselves.

Easily the most popular open access paper repository is arXiv (pronounced
"archive"...geddit?). Other repositories modeled directly after its success, such as bioRxiv,
have already started springing up.

arXiv is already hugely popular.
In fact, so many papers are archived here on a regular basis, that someone created their own

open source "aggregator" service: http://www.arxiv-sanity.com , which collates the papers you
want to read and helps filter out all the others.

3

https://www.continuum.io/blog/developer-blog/automate-your-readme-conda-kapsel-beta-1
http://joss.theoj.org/
http://arxiv.org/

tickets

arxiv

4

1.2.6 6: Open Education

This and Open Methods are closely related. In this sense, any course materials that come from
research that is done are made available for others.

MIT OpenCourseWare is probably the best example of open education at work, but these
types of sites are proliferating.

• Many courses (including this one!) are making their materials freely available on GitHub.

• Tech companies such as GitHub (aptly named: GitHub Classroom) are developing edu-
cational tools specifically aimed at student classrooms. Amazon Web Services provides a
similar platform for course materials, often bundled with its cloud compute services.

Note: This does not by default include MOOCs. If MOOCs make their materials freely avail-
able online, then and only then would it fall under this section.

1.3 Part 2: Open Science Best Practices

In the previous section we went over the absolute essentials for an Open Science project or research
endeavor. It included some examples of real-world services and tools to help expedite the process.

Here, we’ll go into a bit more detail as to exactly how you should tweak your projects to be
truly Open Science. It’s not really something you can just "tack on" at the end; rather, you’ll need
to design your projects from the onset to be part of the Open Science initiative.

When you invent the next TensorFlow, we’ll all be thanking you for following these best prac-
tices!

1.3.1 Anatomy of an open source project

There are some common files and folder hierarchies to implement at the very start of a new project.
The shablona GitHub repository has all this documented very well, but here are the highlights:

• Your src folder, containing all your source code. Surprise!

• A directory of tests for your code. Always always always always always write tests!

• A README file of some kind. This is your introduction that summarizes your project, gives a
basic overview of how to use it, what the prerequisites are, links to further (more detailed)
documentation, and any problems that are known.

• A doc folder containing detailed documentation about every aspect of your project, including
any examples.

• A build script of some sort: a script you can run which automates the majority of the install
process.

• Continuous integration (CI). This is bit more advanced, but the idea of continuous integra-
tion is to have your code exported out to an auto-compiler every time you update the code,
so that you know immediately whether or not it builds successfully.

• A LICENSE file. This is often overlooked (like clicking through a EULA), but in the age of
open source and Open Science it is absolutely essential to have a license of some sort.

5

http://ocw.mit.edu/index.htm
https://github.com/eds-uga/csci1360e-su16
https://classroom.github.com/
https://aws.amazon.com/education/
https://aws.amazon.com/education/
https://www.tensorflow.org/
https://github.com/uwescience/shablona

1.3.2 Document, document, document

This is drilled into computer science students from day 1, and yet one constant across every soft-
ware project is that the documentation sucks. To meet basic adequacy standards, documentation
should include

• The code itself. This is the radical notion that code should be easy to understand, especially
if read by someone who did NOT write it. Save code golf for the competitions!

• Comments in the code. Invariably there will be some logic in the code that doesn’t make
sense at first glance. This should be explained with clear comments. Not comments like
loop through the array, but useful comments like # Because the array is already
sorted, we only loop through parts of it to search for the value we want.

• Full API documentation. Almost every modern programming language has followed Java’s
lead and has a standard for documenting the API and generating really nice HTML JavaDoc-
like websites. Python has Sphinx.

• README. This is usually the user’s first introduction to a new software package (GitHub
makes this file the default landing page of a repository!). It should clearly state the purpose
of the software, how to install and run it, and some basic usage examples before pointing
the user to where they can go to learn more.

1.3.3 Examples and tests

Right after the README, this is the next place the user will go: examples for how to run the code. Is
it command line? What options are there? What kind of data can I run through it? What should I
expect for output? These sorts of questions can be addressed with

• Quickstart. This is file that is dedicated to getting the user up and running with the software
as quickly as possible with an example. The goal is to put the user in the driver’s seat as
quickly as possible, and let them ask questions later.

• Examples. This usually takes the form of a bash script, written to invoke the code and have
it run on a sample dataset that’s provided. Alternatively, you can give a step-by-step guide
of what commands to run, what inputs to give, and what the expected output should be.

• Unit tests. You’ll learn more about this as you take higher-level software engineering
courses, but the main idea is you want to write code that tests your main code. The user
can also go here to get a feel for how the code should be used.

• Containers. This is a very advanced topic that we won’t cover in this course, but the "wave
of the future" is to build your software inside containers (e.g. Docker). Think of containers
as super-lightweight virtual machines that anyone can build from a simple script. Using
containers, you can package your software in such a way that you don’t have to worry
about operating systems or clashing software dependencies.

6

https://en.wikipedia.org/wiki/Self-documenting_code
https://en.wikipedia.org/wiki/Code_golf
http://www.sphinx-doc.org/en/stable/ext/autodoc.html
https://www.docker.com/

pypi

1.3.4 Python Package Index (pypi) is your friend

PyPI is the Python Package Index, and is where the vast majority of external Python packages
are hosted (over 85,000 as of this lecture!). In addition to publishing your code on GitHub,
you can also package your code to be automatically installed via a package manager like pip
or easy_install.

Provided you’re already adhering to the anatomy of an open source project, there are only a
few other steps needed to get your code ready for publishing on PyPI: in particular, writing the
setup.py script that will tell the package managers of people who want to install your package
exactly how to install your package.

Then you just upload the code to PyPI! http://peterdowns.com/posts/first-time-with-
pypi.html

1.3.5 Licensing

Yes, this is super boring, I agree. Fortunately, the wonderful folks at GitHub have created an
awesome resource for you to use.

Choose a License: It provides a handy choose-your-adventure flowchart for picking the per-
fect open software license for your project. I highly recommend it.

However, if you’re just looking for a tl;dr version and want the basic lay of the land, GitHub’s
default licenses for new projects include

• MIT License (pretty much the "no warranty whatsoever, use at your own risk" license)
• Apache 2.0 License (almost exactly like the MIT, but allows for patents and trademarks)
• GPLv3 License (requires anyone who modifies your code to publish those modifications

under GPLv3 too)

1.4 Review Questions

Some questions to discuss and consider:
1: What are your thoughts on Open Science?
2: Have you ever developed open source code before? If so, what projects? If not, are there

any projects you’d be interested in working on?
3: Have you ever dealt with open source licenses? Have you heard of any before this lecture?
4: Have you ever written unit tests before? If so, what did you test? If not, what do you think

the "unit" refers to?

7

https://pypi.python.org/pypi
http://choosealicense.com/
https://en.wikipedia.org/wiki/Wikipedia:Too_long;_didn%27t_read

1.5 Course Administrivia

• Assignment 10 due tonight! Then it’s all over for assignments!

• Final exam review session Wednesday, 10am-12pm! Watch the Slack chat for the Hangouts
link!

• Final exam is Friday, July 28!

1.6 Additional Resources

1. GitHub template for open source Python projects https://github.com/uwescience/shablona
2. Mozilla Open Science Lab https://science.mozilla.org/
3. Open Science Framework (OSF) for all phases of the scientific pipeline https://osf.io/
4. The Center for Open Science (COS), which supports OSF https://cos.io/

8

