L5

June 14, 2017

1 Lecture 5: Advanced Data Structures

CSCI 1360E: Foundations for Informatics and Analytics

1.1 Overview and Objectives

We’ve covered list, tuples, sets, and dictionaries. These are the foundational data structures in
Python. In this lecture, we’ll go over some more advanced topics that are related to these datasets.
By the end of this lecture, you should be able to

Define and use different iterators in loops, such as range (), zip (), and enumerate ()
Use variable unpacking to quickly and elegantly pull data out of lists

¢ Compare and contrast generators and comprehensions, and how to construct them
Explain the benefits of generators, especially in the case of huge datasets

1.2 Part 1: Iterators

The unifying theme with all these collections we’ve been discussing (lists, tuples, sets) in the
context of looping, is that they’re all examples of iterators.

Apart from directly iterating over these collections as in the last lecture, the most common
iterator you'll use is the range function.

1.2.1 range()

Here’s an example:

In [1]: for i in range(10):
print(i, end = " ")

0123456789

Note that the range of numbers goes from 0 (inclusive) to the specified end (exclusive)! The
critical point is that the argument to range specifies the length of the returned iterator.
In short, range () generates a list of numbers for you to loop over.

¢ If you only supply one argument, range () will generate a list of numbers starting at 0 (in-
clusive) and going up to the number you provided (exclusive).

* You can also supply two arguments: a starting number (again, inclusive) and an ending
number.

In [2]: for i in range(5, 10):
print(i, end = " ")

567289

1.3 Part 2: List Comprehensions

Here’s some good news: if we get right down to it, having done loops and lists already, there’s
nothing new here.

Here’s the bad news: it’s a different, and possibly less-easy-to-understand, but much more
concise way of creating lists. We’ll go over it bit by bit.

Let’s look at an example: creating a list of squares.

In [3]: squares = []
for element in range(10):

squares .append (element ** 2)
print (squares)

(0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
Let’s break it down.
for element in range(10):
¢ It's a standard "for" loop header.

¢ The thing we're iterating over is at the end: range (10), or an iterator that contains numbers
[0, 10) by 1s.

¢ In each loop, the current element from the range (10) iterator is stored in element.
squares.append(element ** 2)

¢ Inside the loop, we append a new item to our list squares

¢ The item is computed by taking the current its, element, and computing its square

In a list comprehension, we’ll see these same pieces show up again, just in a slightly different
order.

In [4]: squares = [element ** 2 for element in range(10)]
print(squares)

o, 1, 4, 9, 16, 25, 36, 49, 64, 81]

There it is: a list comprehension. Let’s break it down.

2

* Notice, first, that the entire expression is surrounded by the square brackets [] of a list.
This is for the exact reason you’d think: we’re building a list!

¢ The "for" loop is completely intact, too; the entire header appears just as before (albeit at the
end of the line).

¢ The biggest wrinkle is the loop body. It appears right after the opening bracket, before the
loop header. The rationale for this is that it’s easy to see from the start of the line that

1. We're building a list (revealed by the opening square bracket), and
2. The list is built by successfully squaring a variable element

Here’s another example: adding 10 every element in the squares list from before.

In [5]: new_counts = [item + 10 for item in squares]
print (new_counts)

(10, 11, 14, 19, 26, 35, 46, 59, 74, 91]

¢ Lists are iterators by default, so the header (for item in squares) goes through the list
squares one element at a time, storing each one in the variable item

¢ The loop body takes the current element in the list (item) and adds 10 to it

Hopefully nothing out of the ordinary; just a strange way of organizing the code.

1.4 Part 3: Generators

Generators are cool twists on lists (see what I did there). They’ve been around since Python 2 but
took on a whole new life in Python 3.

That said, if you ever get confused about generators, just think of them as lists. This can poten-
tially get you in trouble with weird errors, but 90% of the time it'll work every time.

Let’s start with an example using range ():

In [6]: x = range(10)

As we know, this will create an iterator with the numbers 0 through 9, inclusive, and assign it
to the variable x.

But it’s technically not an iterator; at the very least, it’s a special type of iterator called a gener-
ator that warrants mention.

So range () gives us a generator! Great! ...what does that mean, exactly?

For most practical purposes, generators and lists are indistinguishable. However, there are
some key differences to be aware of:

* Generators are "lazy". This means when you call range (10), not all 10 numbers are imme-
diately computed; in fact, none of them are. They're computed on-the-fly in the loop itself!
This really comes in handy if, say, you wanted to loop through 1 trillion numbers, or call
range (1000000000000). With vanilla lists, this would immediately create 1 trillion numbers
in memory and store them, taking up a whole lot of space. With generators, only 1 number is
ever computed at a given loop iteration. Huge memory savings!

3

This "laziness" means you cannot directly index a generator, as you would a list, since the
numbers are generated on-the-fly during the loop.
The other point of interest with generators:

¢ Generators only work once. This is where you can get into trouble. Let’s say you're trying
to identify the two largest numbers in a generator of numbers. You’d loop through once and
identify the largest number, then use that as a point of comparison to loop through again
to find the second-largest number (you could do it with just one loop, but for the sake of
discussion let’s assume you did it this way). With a list, this would work just fine. Not with
a generator, though. You’'d need to explicitly recreate the generator.

How do we build generators? Aside from range (), that is.
Remember list comprehensions? Just replace the brackets of a list comprehension [1 with
parentheses ().

In [7]: x = [1 for i in range(10)] # Brackets -> list
print(x)

(0, 1, 2, 3, 4,5, 6,7, 8, 9]

In [8]: x = (i for i in range(10)) # Parentheses -> generator
print(x)

<generator object <genexpr> at 0x109aeda40>

In sum, use lists if:

¢ you're working with a relatively small amount of elements
¢ you want to add to / edit / remove from the elements
¢ you need direct access to arbitrary elements, e.g. some_list [431]

On the other hand, use generators if:

¢ you're working with a giant collection of elements
¢ you'll only loop through the elements once or twice
¢ when looping through elements, you're fine going in sequential order

1.5 Part 4: Other looping mechanisms

There are a few other advanced looping mechanisms in Python that are a little complex, but can
make your life a lot easier when used correctly (especially if you're a convert from something like
C++ or Java).

1.5.1 Variable unpacking

This isn’t a looping mechanism per se, but it is incredibly useful and is often used in the context of
looping.

Imagine you have a tuple of a handful of items; for the sake of example, we’ll say this tuple
stores three elements: first name, last name, and favorite programming language.

The tuple might look like this:

In [9]: t = ("shannon", "quinn", "python")

Now I want to pull the elements out of the tuple and work with them independently, one at a
time. You already know how to do this:

In [10]: first_name = t[0]
last_name = t[1]
lang = t[2]

print(lang)

python

...but you have to admit, using three lines of code, one per variable, to extract all the elements
from the tuple into their own variables, is kind of clunky.

Luckily, there’s a method called "variable unpacking" that allows us to compress those three
lines down to one:

In [11]: fname, lname, language = t
print (fname)

shannon

This does exactly the same thing as before. By presenting three variables on the left hand side,
we're telling Python to pull out elements of the tuple at positions 0, 1, and 2.

(variable unpacking is always assumed to start at position 0 of the structure on the right hand
side)

We’ll see more examples of this in practice using the looping tools later in the lecture.

1.5.2 zip(Q)

zip() is a small method that packs a big punch. It "zips" multiple lists together into something of
one big mega-list for the sole purpose of being able to iterate through them all simultaneously.
Here’s an example: first names, last names, and favorite programming languages.

In [12]: first_names = ['Shannon', 'Jen', 'Natasha', 'Benjamin']
last_names = ['Quinn', 'Benoit', 'Romanov', 'Button']
fave_langs = ['Python', 'Java', 'Assembly', 'Go']

I want to loop through these three lists simultaneously, so I can print out the person’s first
name, last name, and their favorite language on the same line. Since I know they’re the same
length, I can zip them together and, combined with a neat use of variable unpacking, do all of this
in two lines:

In [13]: for fname, lname, lang in zip(first_names, last_names, fave_langs):
print (fname, lname, lang)

Shannon Quinn Python
Jen Benoit Java

Natasha Romanov Assembly
Benjamin Button Go

In [14]: for fname, lname, lang in zip(first_names, last_names, fave_langs):
print (fname, lname, lang)

Shannon Quinn Python

Jen Benoit Java

Natasha Romanov Assembly
Benjamin Button Go

There’s a lot happening here, so take it in chunks:

* zip(first_names, last_names, fave_langs): This zips together the three lists, so that the
elements at position 0 all line up, then the elements at position 1, then position 2, and so on.

¢ Each iteration of the loop handles one of those zipped positions.

¢ Since we know one of those zipped positions contains one element from each of the three
lists (and therefore three total elements), we can use variable unpacking to extract each one
of the individual elements into individual variables.

1.5.3 enumerate()

Of course, there are always those situations where it’s really, really nice to have an index variable
in the loop. Let’s take a look at that previous example:

In [15]: for fname, lname, lang in zip(first_names, last_names, fave_langs):
print (fname, lname, lang)

Shannon Quinn Python

Jen Benoit Java

Natasha Romanov Assembly
Benjamin Button Go

This is great if all I want to do is loop through the lists simultaneously. But what if the ordering
of the elements matters? For example, I want to prefix each sentence with the line number. How
can I track what index I'm on in a loop if I don’t use range ()?

enumerate () handles this. By wrapping the object we loop over inside enumerate (), on each
loop iteration we not only get the next object of interest, but also the index of that object. To wit:

In [16]: x = ['a', 'list', 'of', 'strings']
for index, element in enumerate(x):
print (element, index)

ao

list 1

of 2
strings 3

This comes in handy anytime you need to loop through a list or generator, but also need to
know what index you're on.

And note again: we're using variable unpacking in the loop header. enumerate essentially
performs an "invisible" zip() on the iterator you supply, and zips it up with numbers, one per
element of the iterator.

1.5.4 break and continue

These are two commands that give you much greater control over loop behavior, beyond just what
you specify in the header.

¢ With for loops, you specify how many times to run the loop.
¢ With while loops, you iterate until some condition is met.

For the vast majority of cases, this works well. But sometimes you need just a litt/le more control
for extenuating circumstances.

There are some instances where, barring some external intervention, you really do want to just
loop forever:

In [17]: while True:
"True" can't ever be "False", so this 1s quite literally an infinite loop!

How do you get out of this infinite loop? With a break statement.

In [18]: while True:
print("In the loop!")
break

print("Out of the loop!")

In the loop!
Out of the loop!

Just break. That will snap whatever loop you're currently in and immediately dump you out
just after it.
Same thing with for loops:

In [19]: for i in range(100000): # Loop 100,000 times!
if 1 ==
break
print (i)

Similar to break is continue, though you use this when you essentially want to "skip" certain
iterations.

continue will also halt the current iteration, but instead of ending the loop entirely, it basically
skips you on to the next iteration of the loop without executing any code that may be below it.

In [20]: for i in range(100):
continue
print("This will never be printed, because 'continue' skips it.")
print (i)

99

Notice how the print statement inside the loop is never executed, but our loop counter i is
still incremented through the very end.

1.6 Review Questions

Some questions to discuss and consider:

1: I want a list of all possible combinations of (x, y) values for the range [0, 9]. Show how
this can be done with a list comprehension using two for-loops.

2: Without consulting Google University, consider how generators might work under the
hood. How do you think they’re implemented?

3: Go back to the example with three lists (first names, last names, and programming lan-
guages). Show how you could use enumerate to prepend a line number (the current index of
the lists) to the sentence printed for each person, e.g.: "17: Joe Schmo's favorite language is
C++."

4: Consider that you have a list of lists--representing a matrix--and you want to convert each
"row" of the matrix to a tuple, where the first element is an integer row index, and the second
element is the row itself (the original list). Assuming the list-of-lists matrix already exists, how
could you add the list of indices to it?

1.7 Course Administrivia

¢ "Cell was changed and shouldn’t have" errors on your assignments. If you're getting these
errors, it’s because you put your code in the wrong cell. Make sure you edit only the cells
thatsay # YOUR CODE HERE or YOUR ANSWER HERE. Also, be sure to delete or comment out the
line that says raise NotImplementedError().

8

1.8

If you need to re-fetch an assignment, you have to delete the entire directory of the old
version. For example, in the case where errors are found in the assignment and a new
version needs to be pushed, you'll have to delete your current version as well as the folder it’s
in--so, everything--in order to re-fetch a new version.

How is A1 going? A2 will be out on Thursday.

Additional Resources

Matthes, Eric. Python Crash Course. 2016. ISBN-13: 978-1593276034
Grus, Joel. Data Science from Scratch. 2015. ISBN-13: 978-1491901427

