
MidtermReview

June 28, 2017

1 Midterm Review

CSCI 1360E: Foundations for Informatics and Analytics

1.1 Material

• Anything in Lectures 1 through 10 are fair game!

• Anything in assignments 1 through 4 are fair game!

1.2 Topics

Data Science - Definition - Intrinsic interdisciplinarity - "Greater Data Science"
Python Language - Philosophy - Compiled vs Interpreted - Variables, literals, types, operators

(arithmetic and comparative) - Casting, typing system - Syntax (role of whitespace)
Data Structures - Collections (lists, sets, tuples, dictionaries) - Iterators, generators, and list

comprehensions - Loops (for, while), loop control (break, continue), and utility looping functions
(zip, enumerate) - Variable unpacking - Indexing and slicing - Differences in indexing between
collection types (tuples versus sets, lists versus dictionaries)

Conditionals - if / elif / else structure - Boolean algebra (stringing together multiple con-
ditions with or and and)

Exception handling - try / except structure, and what goes in each block
Functions - Defining functions - Philosophy of a function - Defining versus calling (invoking) a

function - Positional (required) versus default (optional) arguments - Keyword arguments - Func-
tions that take any number of arguments - Object references, and their behaviors in Python

NumPy - Importing external libraries - The NumPy ndarray, its properties (.shape), and in-
dexing - NumPy submodules - Vectorized arithmetic in lieu of explicit loops - NumPy array di-
mensions, or axes, and how they relate to the .shape property - Array broadcasting, uses and rules
- Fancy indexing with boolean and integer arrays

1.3 Midterm Logistics

• The format will be very close to that of JupyterHub assignments (there may or may not be
autograders to help).

• It will be 90 minutes. Don’t expect any flexibility in this time limit, so plan accordingly.

1



• You are NOT allowed to use internet resources or collaborate with your classmates (enforced
by the honor system), but you ARE allowed to use lecture and assignment materials from
this course, as well as terminals in the JupyterHub environment or on your local machine.

• I will be available on Slack for questions most of the day tomorrow, from 9am until about
3pm (then will be back online around 4pm until 5pm). Shoot me a direct message if you
have a conceptual / technical question relating to the midterm, and I’ll do my best to answer
ASAP.

1.4 JupyterHub Logistics

• The midterm will be released on JupyterHub at 12:00am on Thursday, June 29.

• It will be collected at 12:00am on Friday, June 30. The release and collection will be done
by automated scripts, so believe me when I say there won’t be any flexibility on the parts of
these mechanisms.

• Within that 24-hour window, you can start the midterm (by "Fetch"-ing it on JupyterHub)
whenever you like.

• ONCE YOU FETCH THE MIDTERM, YOU WILL HAVE 90 MINUTES FROM THAT MO-
MENT TO SUBMIT THE COMPLETED MIDTERM BACK.

• Furthermore, it’s up to you to keep track of that time. Look at your system clock when you
click "Fetch", or use the timer app on your smartphone, to help you track your time use.
Once the 90 minutes are up, the exam is considered late.

• In theory, this should allow you to take the midterm when it is most convenient for you. Ob-
viously you should probably start no later than 10:30PM tomorrow, since any submissions
after midnight on Friday will be considered late, even if you started at 11:58PM.

1.5 Tough Assignment Questions and Concepts

1.5.1 From A1

Do NOT hard-code answers!
For example, take the question on taking the square root of a number and converting it to a

string:

In [1]: number = 3.14159265359

Answering this is not simply taking what’s in the autograder and copy-pasting it into your
solution:

In [2]: number = "1.7724538509055743"

The whole point is that your code should generalize to any possible input.
To that end, you want to perform the actual operations required: as stated in the directions,

this involves taking the square root and converting the answer to a string:

2



In [3]: number = 3.14159265359
number = number ** 0.5 # Raise to the 0.5, which means square root.
number = str(number) # Cast to a string.

With great looping power comes great looping responsibility.
The question that involved finding the first negative number in a list of numbers gave a lot of

folks problems. By that, I mean folks combined simultaneous for and while loops, inadvertently
creating more problems with some very difficult-to-follow program behavior.

Thing to remember: both loops can solve the same problems, but they lend themselves to
different ones. So in almost all cases, you’ll only need 1 of them to solve a given problem.

In this case: if you need to perform operations on every element of a list, for is your friend. If
you need to do something repeatedly until some condition is satisfied, while is your operator. This
question better fits the latter than the former.

In [4]: def first_negative(numbers):
num = 0

index = 0
while numbers[index] > 0:

index += 1
num = numbers[index]

return num

In [5]: first_negative([1, 2, 3, -1])

Out[5]: -1

In [6]: first_negative([10, -10, -100, -50, -75, 10])

Out[6]: -10

1.5.2 From A2

zip() is an amazing mechanism for looping with MULTIPLE collections at once
There were very few students who deigned to use zip(); if you can learn how to use it, it will

make your life considerably easier whenever you need to loop through multiple lists at the same
time.

Take the question on computing magnitudes of 3D vectors.

In [7]: def compute_3dmagnitudes(X, Y, Z):
magnitudes = []

### BEGIN SOLUTION

### END SOLUTION

return magnitudes

3



Since all three lists--X, Y, and Z--are the same length, you could run a for loop with an index
through one of them, and use that index across all three. That would work just fine.

In [8]: def compute_3dmagnitudes(X, Y, Z):
magnitudes = []

length = len(X)
for i in range(length):

# Pull out the corresponding (x, y, z) coordinates.
x = X[i]
y = Y[i]
z = Z[i]

### Do the magnitude computation ###

return magnitudes

...but it’s very verbose, and can get a bit difficult to follow.
If, instead, you use zip, you don’t need to worry about using range or computing the len of a

list or even extracting the right x,y,z from each index:

In [9]: def compute_3dmagnitudes(X, Y, Z):
magnitudes = []

for x, y, z in zip(X, Y, Z):
pass
### Do the magnitude computation ###

return magnitudes

Look how much cleaner that is!
The zip function is amazing. You can certainly get along without it, as shown in the previous

slide, but it handles so much of that work for you, so I encourage you to practice using it.
Indentation in Python may be the most important rule of all.
I cannot overemphasize how important it is for your code indentation to be precise and exact.
Indentation dictates whether a line of code is part of an if statement or not, part of a for loop

or not, part of a try block or not, even part of a function or not.
There were quite a few examples of code that was completely correct, but it wasn’t indented

properly--for example, it wasn’t indented under a for loop, so the line was executed only once,
after the for loop finished running.

1.5.3 From A3

if statements don’t always need an else.
I saw this a lot:

In [10]: def list_of_positive_indices(numbers):
indices = []
for index, element in enumerate(numbers):

4



if element > 0:
indices.append(index)

else:
pass # Why are we here? What is our purpose? Do we even exist?

return indices

if statements are adults; they can handle being short-staffed, as it were. If there’s literally
nothing to do in an else clause, you’re perfectly able to omit it entirely:

In [11]: def list_of_positive_indices(numbers):
indices = []
for index, element in enumerate(numbers):

if element > 0:
indices.append(index)

return indices

An actual example of reference versus value.
This was the bonus question from A3 about building a list-of-lists matrix.
Some of you had a very clever solution that technically worked, but would fail spectacularly

the moment you actually tried to use the matrix built by the function.
In short: rather than construct a matrix of 0s one element at a time, the strategy was to pre-

construct a row of 0s, and then use just 1 loop to append this pre-built list a certain number of
times.

It was clever in that it avoided the need for nested loops, which are certainly difficult to write
and understand under the best of circumstances! But you’d see some odd behavior if you tried to
use the matrix that came out...

In [12]: def make_matrix(rows, cols):
pre_built_row = []

# Build a single row that has <cols> 0s.
for j in range(cols):

pre_built_row.append(0)

# Now build a list of the rows.
matrix = []
for i in range(rows):

matrix.append(pre_built_row)

return matrix

In [13]: m = make_matrix(3, 4)
print(m)

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

Certainly looks ok--3 "rows" (i.e. lists), each with 4 0s in them. Why is this a problem?
Let’s try changing one of the 0s to something else. Say, change the 0 in the upper left (position

0, 0) to a 99.

5



In [14]: m[0][0] = 99

Now if we print this... what do you think we’ll see?

In [15]: print(m)

[[99, 0, 0, 0], [99, 0, 0, 0], [99, 0, 0, 0]]

cue The Thriller
This is a pass-by-reference problem. You’ve appended three references to the same object, so when

you update one of them, you actually update them all.
The fix is to use a nested-for loop to create everything on-the-fly:

In [16]: def make_matrix(rows, cols):
matrix = []

for i in range(rows):
matrix.append([]) # First, append an empty list for the new row.
for j in range(cols):

matrix[i].append(0) # Now grow that empty list.

return matrix

In [17]: m = make_matrix(3, 4)
print(m)

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

In [18]: m[0][0] = 99
print(m)

[[99, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

1.5.4 From A4

len(ndarray) versus ndarray.shape
For the question about checking that the lengths of two NumPy arrays were equal, a lot of

people chose this route:

In [19]: # Some test data
import numpy as np
x = np.random.random(10)
y = np.random.random(10)

In [20]: len(x) == len(y)

Out[20]: True

6



which works, but only for one-dimensional arrays.
For anything other than 1-dimensional arrays, things get problematic:

In [21]: x = np.random.random((5, 5)) # A 5x5 matrix
y = np.random.random((5, 10)) # A 5x10 matrix

In [22]: len(x) == len(y)

Out[22]: True

These definitely are not equal in length. But that’s because len doesn’t measure length of
matrices...it only measures the number of rows (i.e., the first axis--which in this case is 5 in both,
hence it thinks they’re equal).

You definitely want to get into the habit of using the .shape property of NumPy arrays:

In [23]: x = np.random.random((5, 5)) # A 5x5 matrix
y = np.random.random((5, 10)) # A 5x10 matrix

In [24]: x.shape == y.shape

Out[24]: False

We get the answer we expect.

1.6 Other Questions from the Google Hangouts Review Session

The Tale of Two for Loops

In [25]: import numpy as np

# Generate a random list to work with as an example.
some_list = np.random.random(10).tolist()
print(some_list)

[0.6931832056888297, 0.6021857169653142, 0.03836475358595104, 0.3651604096030209, 0.2755364584885275, 0.30045938465583466, 0.47102308993526965, 0.8970256806073568, 0.15810029910258372, 0.21366871301862667]

1: Looping through elements

In [26]: for element in some_list:
print(element)

0.6931832056888297
0.6021857169653142
0.03836475358595104
0.3651604096030209
0.2755364584885275
0.30045938465583466
0.47102308993526965
0.8970256806073568
0.15810029910258372
0.21366871301862667

7



2: Looping over indices of elements

In [27]: list_length = len(some_list)
for index in range(list_length): # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

element = some_list[index]
print(element)

0.6931832056888297
0.6021857169653142
0.03836475358595104
0.3651604096030209
0.2755364584885275
0.30045938465583466
0.47102308993526965
0.8970256806073568
0.15810029910258372
0.21366871301862667

In general:

• If you don’t care about list order, or where you are in the list--use "loop by element"

• If ordering of elements MATTERS, or where you are in the list during a loop is important--
use "loop by index"

Sliding windows for finding substrings in a longer string
From A4, Bonus Part A:

In [28]: def count_substring(base_string, substring, case_insensitive = True):
count = 0

if case_insensitive == True:
base_string = base_string.lower()
#base_string = base_string.upper()

length = len(substring)
index = 0
while (index + length) < len(base_string):

# Sliding window.
substring_to_test = base_string[index : (index + length)]
if substring_to_test == substring:

count += 1

index += 1

return count

8



Normalization by any other name
This confused some folks, namely because "normalization" can mean a lot of different things.

In particular, two different types of normalization were conflated:
1: Rescale vector elements so the vector’s magnitude is 1

• NOT the same thing as having all the vector elements SUM to 1

2: Rescale vector elements so they all sum to 1

• What the Bonus, Part B in A4 was actually asking for (even though the autograder was
terrible)

tl;dr These are both perfectly valid forms of normalization. It’s just that the autograder was
horrible. Here’s what the spirit of the question was asking for:

In [29]: numbers = [10, 20, 30, 40]
print(sum(numbers))

100

In [30]: numbers = [10/100, 20/100, 30/100, 40/100]
# (0.1 + 0.2 + 0.3 + 0.4) = 1.0
print(sum(numbers))

1.0

In [31]: import numpy as np
def normalize(something):

# Compute the normalizing constant
s = something.sum()

# Use vectorized programming (broadcasting) to normalize each element
# without the need for any loops
normalized = (something / s)

return normalized

This can then be condensed into the 3 lines required by the question:

In [32]: import numpy as np # 1
def normalize(something): # 2

return something / something.sum() # 3

1.6.1 Good luck!

9



goodluck

10


