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1 Lecture 13: Crash Course in Probability

CSCI 1360E: Foundations for Informatics and Analytics

1.1 Overview and Objectives

To wrap up the fundamental concepts of core data science, as well as our interlude from Python,
today we’ll discuss probability and how it relates to statistical inference. Like with statistics, we’ll
wave our hands a lot and skip past many of the technicalities, so I encourage you to take a full
course in probability and statistics. By the end of this lecture, you should be able to

• Define probability and its relationship to statistics
• Understand statistical dependence and independence
• Explain conditional probability and its role in Bayes’ Theorem

1.2 Part 1: Probability

When we say "what is the probability of X", we’re discussing a way of quantifying uncertainty.
This uncertainty relates to one particular event--in the above statement, that event is "X"--

happening out of a universe of all possible events.
An easy example is rolling a die: the universe consists of all possible outcomes (any of the 6

sides), whereas any subset is a single event (one side; an even number; etc).

1.2.1 Relationship with Statistics

Think of "probability" and "statistics" as two sides of the same coin: you cannot have one without
the other.

Let’s go back to the concept of distributions from the Statistics lecture. Remember this figure?
These distributions allow us to say something about the probability of a random variable taking

a certain specific value.
In fact, if you look at the previous plot of the normal bell curves--picking a spot along one of

those curves gives you the probability of the random variable representing that distribution taking
that particular value you picked!

I hope it becomes clear that, the most likely value for a random variable to take is its mean
(since the curve is highest there). This even has a special name: the expected value. It means, on
average, this is the value we’re going to get from this random variable.

We have a special notation for probability:
P(X = x)
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P is the universal symbol for "probability of", followed by some event. In this case, our event is
"X = x".

(Recall from before: random variables are denoted with uppercase letters (e.g. X), and observa-
tions of that random variable are denoted with lowercase letters (e.g. x). So when we say X = x,
we’re asking for the event where the random variable X takes on the value of the observation x.)

A few other properties to be aware of:

• Probabilities are always between 0 and 1; no exceptions. This means, for any arbitrary event
A, 0 ≤ P(A) ≤ 1 (super-official notation!).

• The probability of something happening is always exactly 1. Put another way, if you combine
all possible events together and ask the probability of one of them occurring, that probability
is 1.

• If A and B are two possible events that disparate (as in, they have no overlap), then the
probability of either one of them happening is just the sum of their individual probabilities:
P(A, B) = P(A) + P(B).

These three points are referred to as the Axioms of Probability and form the foundation for
pretty much every other rule of probability that has ever been and will ever be discovered.

1.2.2 Visualizing

A good way of learning probability is to visualize it. Take the spinner on the following slide:
It’s split into 12 segments. You could consider the arrow landing on a segment to be one par-

ticular "event". So the probability of landing on any one specific segment is 1/12. The probability
of landing on any segment at all is 1.

1.2.3 Dependence and Independence

Two events A and B are dependent if having knowledge about one of them implicitly gives you
knowledge about the other. On the other hand, they’re independent if knowing one tells you
nothing about the other. Take an example of flipping a coin:

I have a penny; a regular old penny. I flip it once, and it lands on Heads. I flip it 9 more times,
and it lands on Heads each time. What is the probability that the next flip will be Heads?

If you said 1/2 (or 50%), you’re correct! Coin flips are independent events; you could flip the
coin 100 times and get 100 heads, and the probability of tails would still be 1/2. Knowing one coin
flip or 100 coin flips tells you nothing about future coin flips.

Now, I want to know what the probability is of two consecutive coin flips returning Heads. If the
first flip is Heads, what is the probability of both flips being Heads? What if the first flip is Tails?

In this case, the two coin flips are dependent. If the first flip is Tails, then P(two flips = Heads)
is 0; it’s impossible! On the other hand, if the first coin flip is Heads, then while it’s not certain
that both coin flips can be Heads, it’s still a possibility. Thus, knowing one can tell you something
about the other.

If two events A and B are independent, their probability can be written as:
P(A, B) = P(A) ∗ P(B)
This is a huge simplification that comes up in many data science algorithms: if you can prove

two random variables in your data are statistically independent, analyzing their behavior in con-
cert with each other becomes much easier.
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On the other hand, if two events are dependent, then we can define the probabilities of these
events in terms of their conditional probabilities:

P(A, B) = P(A|B) ∗ P(B)
This says "the probability of A and B equals the conditional probability of A given B, multiplied

by the probability of B."
That vertical bar means "conditioned on", and we’ll get to that next!

1.2.4 Conditional Probability

Conditional probability is way of "fixing" a random variable(s) we don’t know, so that we can (in
some sense) "solve" for the other random variable(s). So when we say:

P(A, B) = P(A|B) ∗ P(B)
This tells us that, for the sake of this computation, we’re assuming we know what B is in

P(A|B), as knowing B gives us additional information in figuring out what A is (again, since
A and B are dependent).

1.2.5 Bayes’ Theorem

Which brings us, at last, to Bayes’ Theorem and what is probably the hardest but most important
part of this entire lecture.

(Thank you, Rev. Thomas Bayes)
Bayes’ Theorem is a clever rearrangement of conditional probability, which allows you to up-

date conditional probabilities as more information comes in. For two events, A and B, Bayes’
Theorem states:
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P(A|B) = P(B|A) ∗ P(A)

P(B)

As we’ve seen, P(A) and P(B) are the probabilities of those two events independent of each
other, P(B|A) is the probability of B given that we know A, and P(A|B) is the probability of A given
that we know B.

1.2.6 Interpretation of Bayes’ Theorem

Bayes’ Theorem allows for an interesting interpretation of probabilistic events.

• P(A|B) is known as the posterior probability, which is the conditional event you’re trying to
compute.

• P(A) is known as the prior probability, which represents your current knowledge on the
event A.

• P(B|A) is known as the likelihood, essentially weighting how heavily the prior knowledge
you have accumulated factors into the computation of your posterior.

• P(B) is a normalizing factor--since the variable/event A, the thing we’re determining, is not
involved in this quantity, it is essentially a constant.

Given this interpretation, you could feasibly consider using Bayes’ Theorem as a procedure
not only to conduct inference on some system, but to simultaneously update your understanding of
the system by incorporating new knowledge.

Here’s another version of the same thing (they use the terms "hypothesis" and "evidence",
rather than "event" and "data"):

1.3 Review Questions

Some questions to discuss and consider:
1: Go back to the spinner graphic. We know that the probability of landing on any specific

segment is 1/12. What is the probability of landing on a blue segment? What about a red segment?
What about a red OR yellow segment? What about a red AND yellow segment?

2: Recall the "conditional probability chain rule" from earlier in this lecture, i.e. that P(A, B) =
P(A|B) ∗ P(B). Given a coin with P(heads) = 0.75 and P(tails) = 0.25, and three coin flips
A = heads, B = tails, C = heads, compute P(A, B, C).
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3: Bayes’ Theorem is a clever rearrangement of conditional probability using basic principles.
Starting from there, P(A, B) = P(A|B) ∗ P(B), see if you can derive Bayes’ Theorem for yourself.

4: Provide an example of a problem that Bayes’ Theorem would be useful in solving (feel free
to Google for examples), and how you would set the problem up (i.e. what values would be
plugged into which variables in the equation, and why).

5: The bell curve for the normal distribution (or for any distribution) has a special name: the
probability distribution function, or PDF (yep, like the file format). There’s another distribution,
the uniform distribution, that exists between two points a and b. Given the name, what do you
think its PDF from a to b would look like?

1.4 Course Administrivia

• How is A6 going? It’s due tonight at 11:59pm!

• This lecture wraps up our "crash course" section; starting Wednesday, we’ll get back to
Python and seeing how the contents of the past three lectures can be implemented in Python.

• Data science theory is wholly built on linear algebra, probability, and statistics. Make
sure you understand the contents of these lectures!

1.5 Additional Resources

1. Grus, Joel. Data Science from Scratch. 2015. ISBN-13: 978-1491901427
2. Grinstead, Charles and Snell, J. Laurie. Introduction to Probability. PDF
3. Illowsky, Barbara and Dean, Susan. Introductory Statistics. link
4. Diez, David; Barr, Christopher; Cetinkaya-Rundel, Mine; OpenIntro Statistics. link
5. Wasserman, Larry. All of Statistics: A Concise Course in Statistical Inference. 2010. ISBN-13:

978-1441923226
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http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
https://openstax.org/details/introductory-statistics
https://www.openintro.org/stat/textbook.php?stat_book=os

