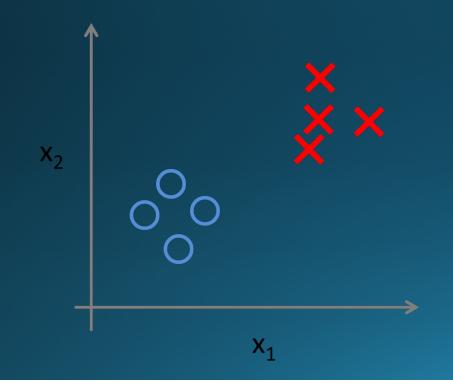
Semi-Supervised Learning

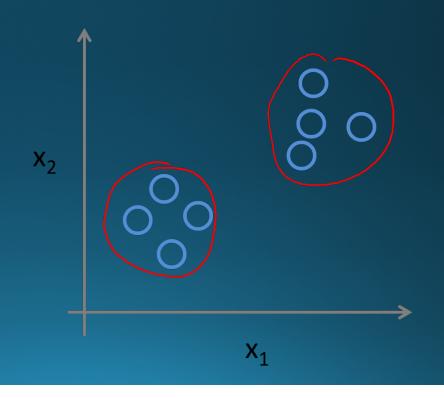
Supervised learning

Supervised Learning



Unsupervised learning

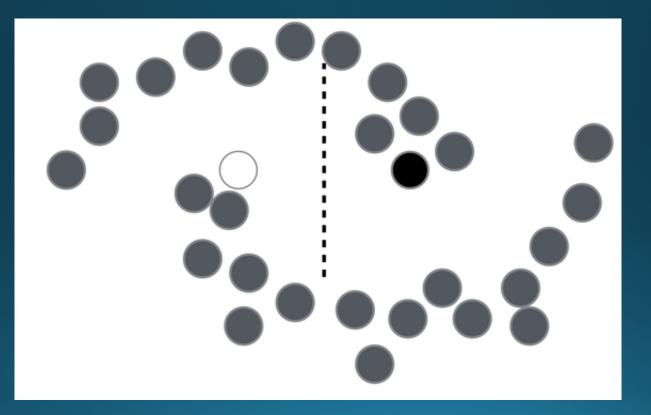
Unsupervised Learning



Semi-supervised learning

- Basically a hybrid!
- Given:
 - A pool of labeled examples L
 - A (usually larger) pool of unlabeled examples U
- Can you improve accuracy somehow using U?

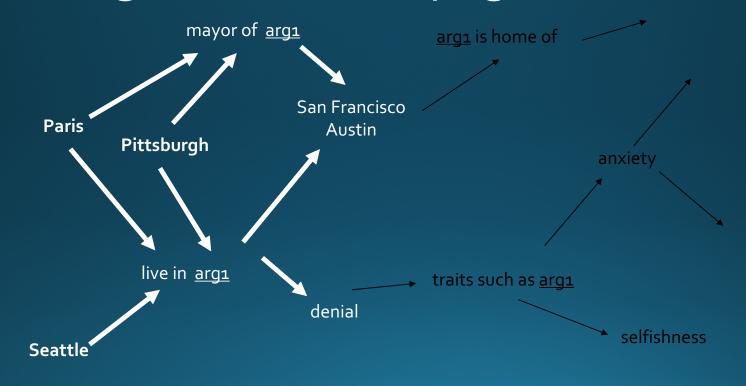
Semi-supervised Learning



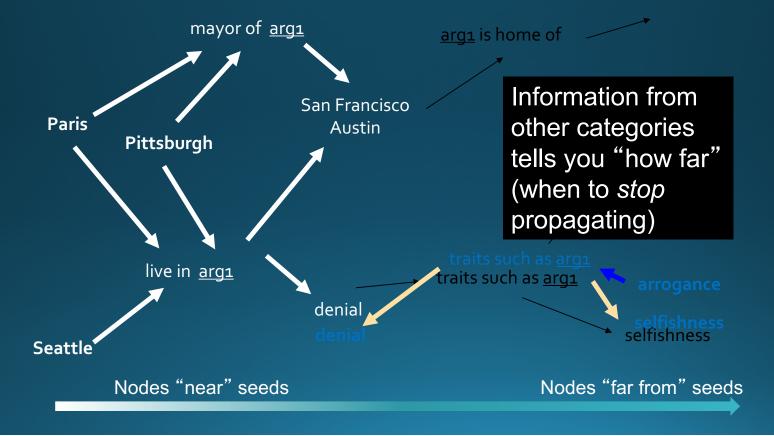
Semi-Supervised Bootstrapped Learning/Self-training

Extract cities:

Semi-Supervised Bootstrapped Learning via Label Propagation

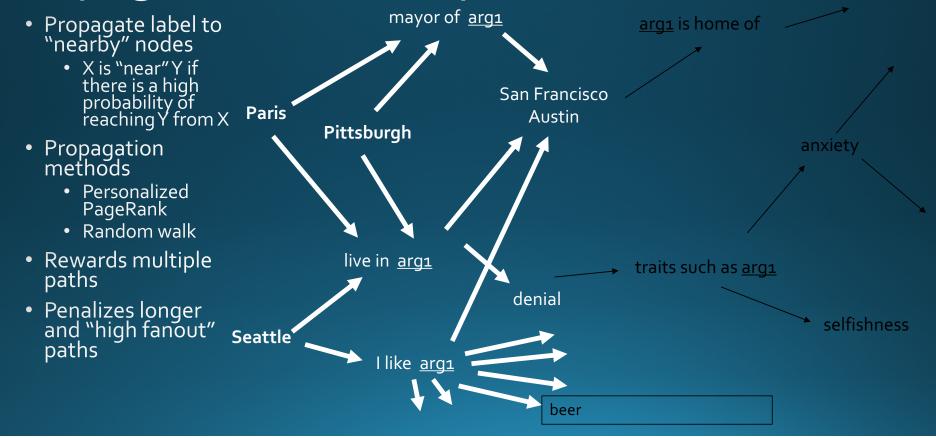


Semi-Supervised Bootstrapped Learning via Label Propagation



Spectral Clustering

Semi-Supervised Learning as Label Propagation on a Graph



Semi-Supervised Classification of Network Data Using Very Few Labels

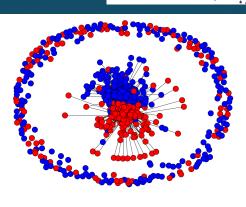
Frank Lin Carnegie Mellon University, Pittsburgh, Pennsylvania Email: frank@cs.cmu.edu William W. Cohen Carnegie Mellon University, Pittsburgh, Pennsylvania Email: wcohen@cs.cmu.edu

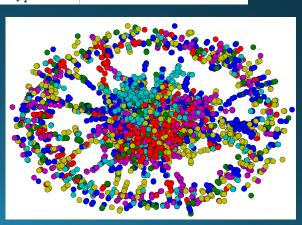
ASONAM-2010 (Advances in Social Networks Analysis and Mining)

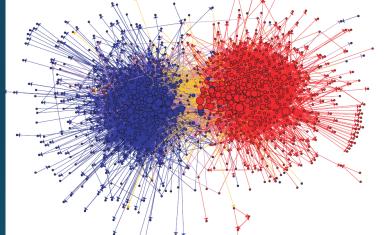
Network Datasets with Known Classes

- UBMCBlog
- AGBlog
- MSPBlog
- Cora
- Citeseer

	Nodes	Edges	Density
UMBCBlog	404	2725	0.01670
AGBlog	1222	19021	0.01274
$\operatorname{MSPBlog}$	1031	9316	0.00876
Cora	2485	5209	0.00084
CiteSeer	2110	3757	0.00084







MultiRankWalk

- Seed Selection
 - Order by PageRank or degree, or even randomly
 - Traverse list until you have k examples/class

 $\vec{r} = (1 - d)\vec{u} + dW\vec{r}$

Given: A graph G = (V, E), corresponding to nodes in G are instances X, composed of unlabeled instances X^U and labeled instances X^L with corresponding labels Y^L , and a damping factor d. **Returns:** Labels Y^U for unlabeled nodes X^U .

For each class c

- 1) Set $\mathbf{u}_i \leftarrow 1, \forall Y_i^L = c$
- 2) Normalize **u** such that $||\mathbf{u}||_1 = 1$
- 3) Set $R_c \leftarrow RandomWalk(G, \mathbf{u}, d)$

For each instance *i*

- Set $X_i^U \leftarrow argmax_c(R_{ci})$
 - Fig. 1. The MultiRankWalk algorithm.

Comparison: wvRN

• One definition [MacSkassy & Provost, JMLR 2007]:...

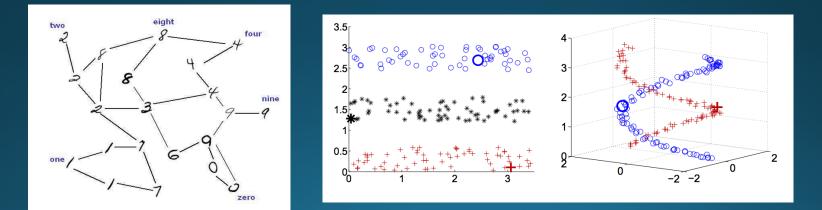
Definition. Given $v_i \in \mathbf{V}^U$, the weighted-vote relational-neighbor classifier (wvRN) estimates $P(x_i | \mathcal{N}_i)$ as the (weighted) mean of the class-membership probabilities of the entities in \mathcal{N}_i :

$$P(x_i = c | \mathcal{N}_i) = \frac{1}{Z} \sum_{v_j \in \mathcal{N}_i} w_{i,j} \cdot P(x_j = c | \mathcal{N}_j),$$

- Does this look familiar?
- Homophily!

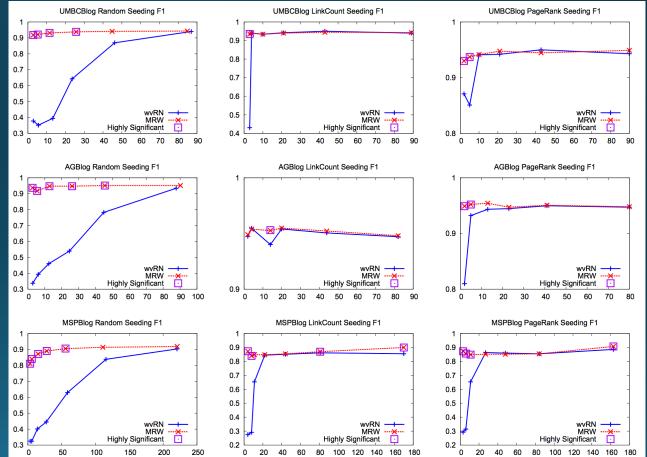
Comparison: HF

- Another definition in [X. Zhu, Z. Ghahramani, and J. Lafferty, ICML 2003]
- A harmonic field the score of each node in the graph is the harmonic, or linearly weighted, average of its neighbors' scores (harmonic field, HF)



MRW versus wvRN

- MRW is easily the method to beat
- wvRN matches MRW only when seeding is not random
- Still takes a larger number of labeled instances compared to MRW



Why is MRW > wvRN?

- Start with wvRN & HF objectives
- Do not account for graph *structure*

۲

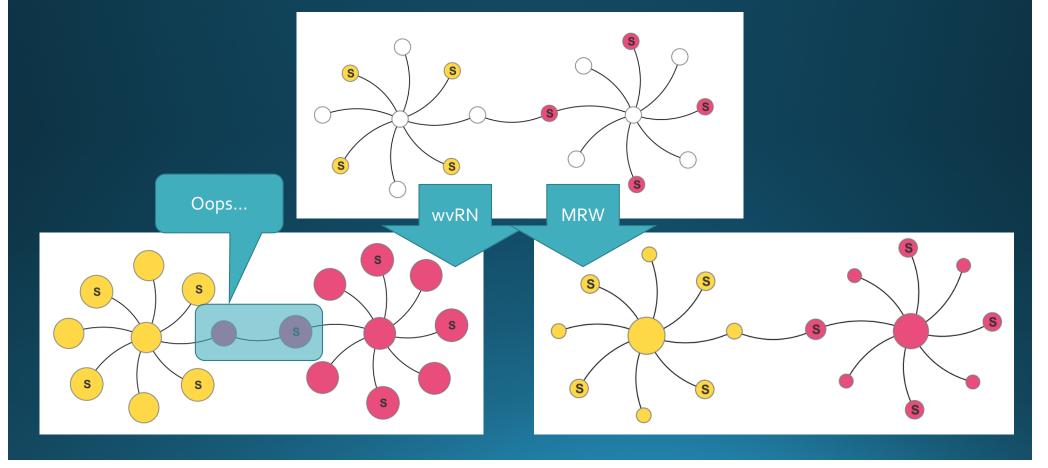
(6.2)
$$P(x_i = c | N_i) = \frac{1}{Z} \sum_{v_j \in N_i} w_{i,j} \cdot P(x_j = c | N_j)$$

(6.2) $f(i) = \frac{1}{Z} \sum_{v_j \in N_i} w_{i,j} \cdot P(x_j = c | N_j)$

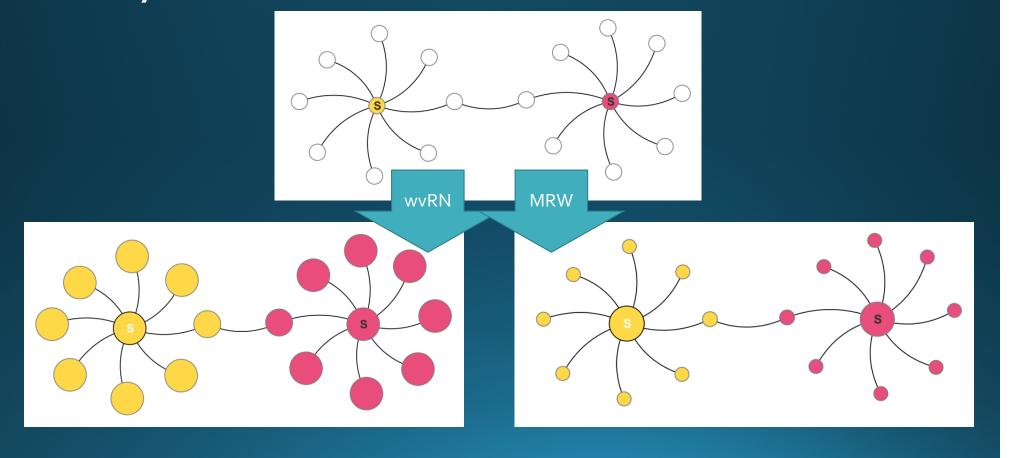
(6.3)
$$f(j) = \frac{1}{d_j} \sum_{i \ j} w_{i,j} f(i)$$

- Graph-walk methods do not have these constraints
 - And directly account for graph structure

Why is MRW > wvRN?

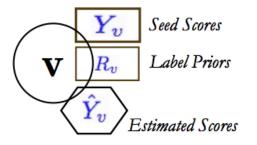


Why is MRW > wvRN?

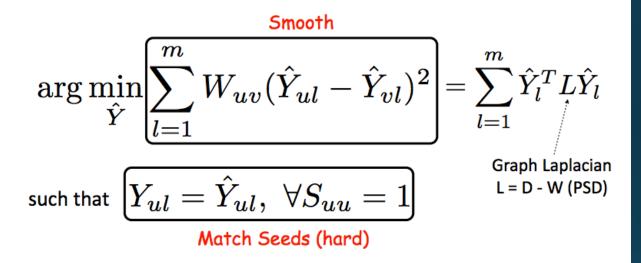


Notations

- $\hat{Y}_{v,l}$: score of estimated label I on node v
- $Y_{v,l}$: score of seed label I on node v
- $R_{v,l}$: regularization target for label I on node v
- S : seed node indicator (diagonal matrix)
- W_{uv} : weight of edge (u, v) in the graph



LP-ZGL (Zhu et al., ICML 2003)

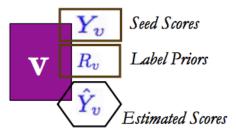


- Smoothness
 - two nodes connected by an edge with high weight should be assigned similar labels
- Solution satisfies harmonic property

Modified Adsorption (MAD) [Talukdar and Crammer, ECML 2009]

$$rgmin_{\hat{m{Y}}} \sum_{l=1}^{m+1} \left[\|m{S}\hat{m{Y}}_l - m{S}m{Y}_l\|^2 + \mu_1 \sum_{u,v} m{M}_{uv} (\hat{m{Y}}_{ul} - \hat{m{Y}}_{vl})^2 + \mu_2 \|\hat{m{Y}}_l - m{R}_l\|^2
ight]$$

- m labels, +1 dummy label
- $\boldsymbol{M} = \boldsymbol{W}^{\dagger} + \boldsymbol{W}'$ is the symmetrized weight matrix
- $\hat{\boldsymbol{Y}}_{vl}$: weight of label l on node v
- \boldsymbol{Y}_{vl} : seed weight for label l on node v
- S: diagonal matrix, nonzero for seed nodes
- \mathbf{R}_{vl} : regularization target for label l on node v



Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

$$\arg\min_{\hat{\bm{Y}}} \sum_{l=1}^{m+1} \left[\|\bm{S}\hat{\bm{Y}}_l - \bm{S}\bm{Y}_l\|^2 + \mu_1 \sum_{u,v} \bm{M}_{uv} (\hat{\bm{Y}}_{ul} - \hat{\bm{Y}}_{vl})^2 + \mu_2 \|\hat{\bm{Y}}_l - \bm{R}_l\|^2 \right]$$

How to do this minimization? First, differentiate to find min is at

$$(\mu_1 \mathbf{S} + \mu_2 \mathbf{L} + \mu_3 \mathbf{I}) \ \hat{\mathbf{Y}}_l = (\mu_1 \mathbf{S} \mathbf{Y}_l + \mu_3 \mathbf{R}_l) \ .$$

Jacobi method:

- To solve Ax=b for x
- Iterate:

$$\mathbf{x}^{(k+1)} = D^{-1}(\mathbf{b} - R\mathbf{x}^{(k)}).$$

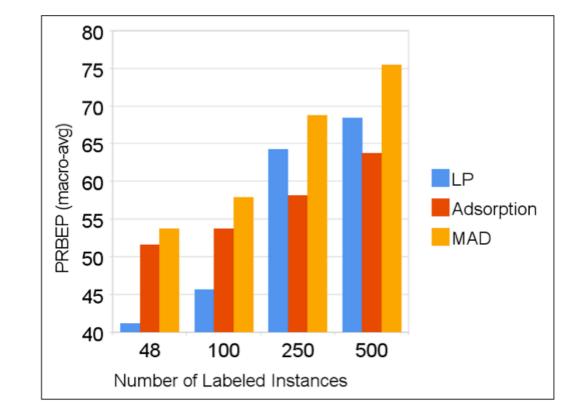
• ... or:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right), \quad i = 1, 2, \dots, n.$$

Inputs $\boldsymbol{Y}, \boldsymbol{R} : |V| \times (|L|+1), \boldsymbol{W} : |V| \times |V|, \boldsymbol{S} : |V| \times |V|$ diagonal $\hat{\boldsymbol{Y}} \leftarrow \boldsymbol{Y}$ $\boldsymbol{M} = \boldsymbol{W'} + \boldsymbol{W'}^{\dagger}$ $Z_v \leftarrow \boldsymbol{S}_{vv} + \mu_1 \sum_{u \neq v} \boldsymbol{M}_{vu} + \mu_2 \quad \forall v \in V$ repeat for all $v \in V$ do $\hat{\boldsymbol{Y}}_v \leftarrow \frac{1}{Z_v} \left((\boldsymbol{S}\boldsymbol{Y})_v + \mu_1 \boldsymbol{M}_{v.} \hat{\boldsymbol{Y}} + \mu_2 \boldsymbol{R}_v \right)$ end for until convergence

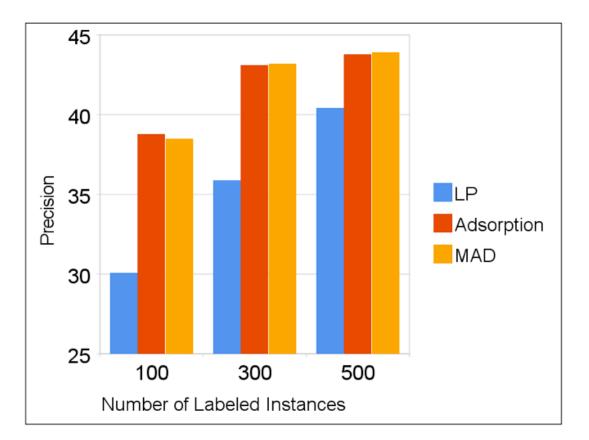
- Extends Adsorption with well-defined optimization
- Importance of a node can be discounted
- Easily Parallelizable: Scalable

Text Classification



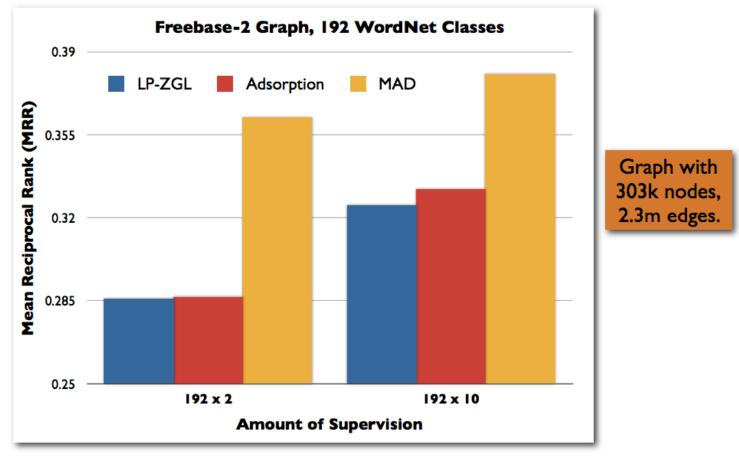
PRBEP (macro-averaged) on WebKB Dataset, 3148 test instances

Sentiment Classification

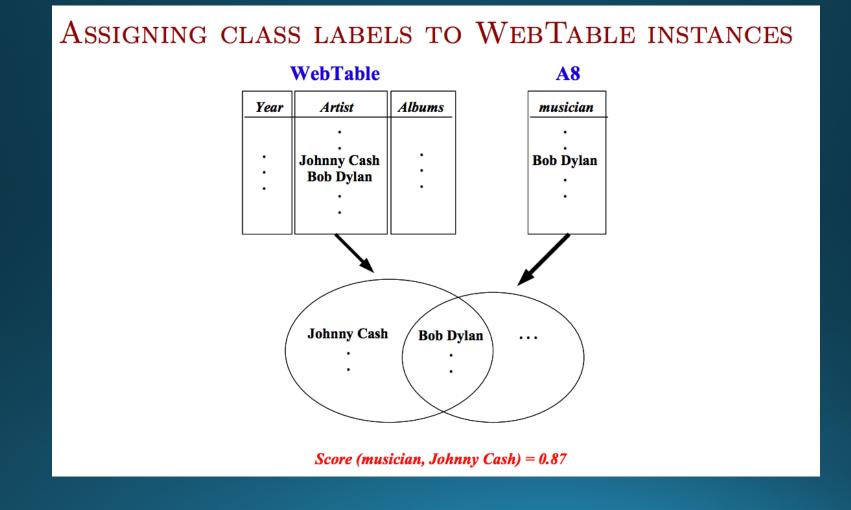


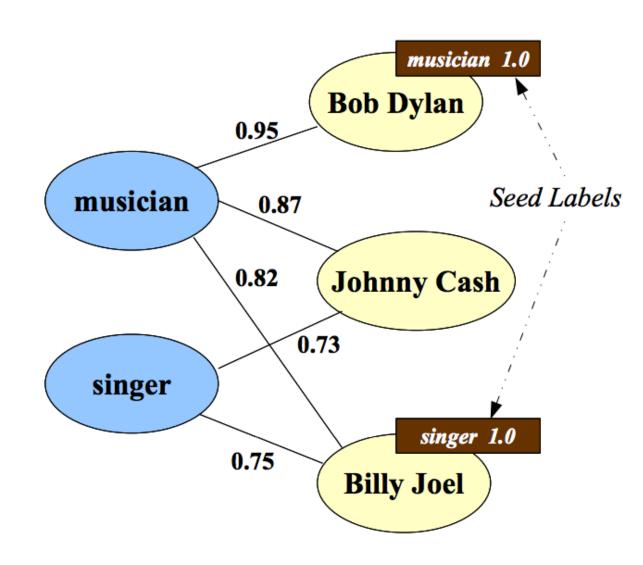
Precision on 3568 Sentiment test instances

Class-Instance Acquisition



16





New (Class, Instance) Pairs Found

Class	A few non-seed Instances found by Adsorption
Scientific Journals	Journal of Physics, Nature, Structural and Molecular Biology, Sciences Sociales et sante, Kidney and Blood Pressure Research, American Journal of Physiology-Cell Physiology,
NFL Players	Tony Gonzales, Thabiti Davis, Taylor Stubblefield, Ron Dixon, Rodney Hannan,
Book Publishers	Small Night Shade Books, House of Ansari Press, Highwater Books, Distributed Art Publishers, Cooper Canyon Press,

Total classes: 908

Modern SSL

- Graph Laplacians
 - Enforces graph structure
 - Imposes smoothness on labels
- Graph embeddings
 - "Embedding" ~ "context"
- Transductive -> Inductive
 - Transductive: learns the unlabeled data from the labeled data + structure
 - Inductive: generalizes to completely unobserved data

Graph Laplacians

• Reformulate SSL objective as two distinct terms:

$$f^{T}Lf = \frac{1}{2} \sum_{i,j} W_{ij} (f(i) - f(j))^{2}$$

Weighted sum of supervised loss over *labeled* instances

$$J(f) = f^{T}Lf + \sum_{i=1}^{l} \lambda (f(i) - y_{i})^{2} = f^{T}Lf + (f - y)^{T}\Lambda (f - y)$$

Graph Laplacian regularization term

Graph Embeddings

- Remember word embeddings with word2vec?
- Context!

$$-\sum_{(i,c)} \log p(c|i) = -\sum_{(i,c)} \left(\mathbf{w}_c^T \mathbf{e}_i - \log \sum_{c' \in \mathcal{C}} \exp(\mathbf{w}_{c'}^T \mathbf{e}_i) \right)$$

- C is set of all possible context
- w's are parameters of Skipgram
- e_i is embedding of node *i*
- Estimate "context" of each node with a random walk over neighborhood of a fixed window size
- Skipgram-based model, DeepWalk

Inductive SSL

- You start with X^I (labeled) and X^U (unlabeled), hoping their combination will result in a superior model
- Semi-supervised learning yields predictions on X^U
 - Transductive learning
- What if a *completely unobserved* data point shows up?
 - Inductive learning—a concept often left out in SSL literature
- Convert your SSL framework to classification!

Transductive learning (note embeddings)

$$p(y|\mathbf{x}, \mathbf{e}) = \frac{\exp[\mathbf{h}^k(\mathbf{x})^T, \mathbf{h}^l(\mathbf{e})^T]\mathbf{w}_y}{\sum_{y'} \exp[\mathbf{h}^k(\mathbf{x})^T, \mathbf{h}^l(\mathbf{e})^T]\mathbf{w}_{y'}}$$

Inductive learning (dependent only on x)

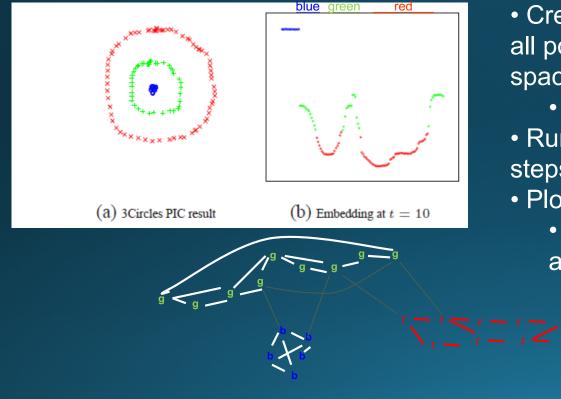
$$p(y|\mathbf{x}) = \frac{\exp[\mathbf{h}^k(\mathbf{x})^T, \mathbf{h}^l(\mathbf{x})^T]\mathbf{w}_y}{\sum_{y'} \exp[\mathbf{h}^k(\mathbf{x})^T, \mathbf{h}^l(\mathbf{x})^T]\mathbf{w}_{y'}}$$

Quick digression to unsupervised learning...

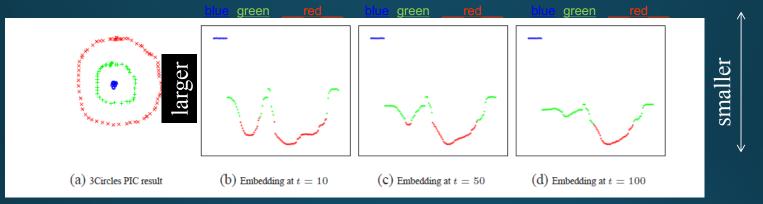
Spectral Clustering

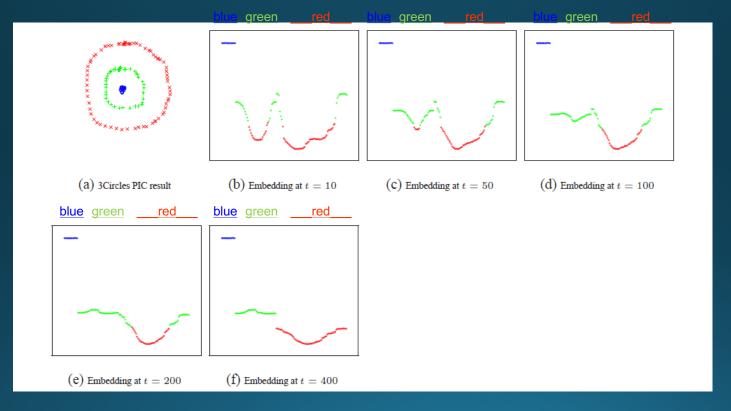
Repeated averaging with neighbors as a clustering method

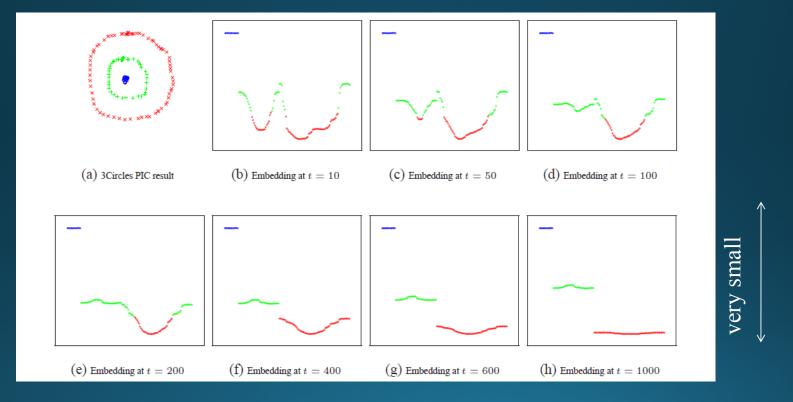
- Pick a vector v^o (maybe at random)
- Compute v¹ = Wv^o
 - i.e., replace v°[x] with *weighted average* of v°[y] for the neighbors y of x
- Plot v¹[x] for each x
- Repeat for v², v³, ...
- Variants widely used for semi-supervised learning
 - clamping of labels for nodes with known labels
- Without clamping, will converge to constant v^t
- What are the *dynamics* of this process?



- Create a graph, connecting all points in the 2-D initial space to all other points
 Weighted by distance
- Run power iteration for 10 steps
- Plot node id x vs v¹⁰(x)
 nodes are ordered by
 - actual cluster number







PIC: Power Iteration Clustering

- Run power iteration (repeated averaging w/ neighbors) with early stopping
 - 1. Pick an initial vector \mathbf{v}^0 .
 - 2. Set $\mathbf{v}^{\mathbf{t}+1} \leftarrow \frac{W\mathbf{v}^{\mathbf{t}}}{\|W\mathbf{v}^{\mathbf{t}}\|_{1}}$ and $\delta^{t+1} \leftarrow |\mathbf{v}^{\mathbf{t}+1} \mathbf{v}^{\mathbf{t}}|$.
 - 3. Increment t and repeat above step until $|\delta^t \delta^{t-1}| \simeq 0$.
 - 4. Use k-means to cluster points on \mathbf{v}^t and return clusters $C_1, C_2, ..., C_k$.
- v°: random start, or "degree matrix" D, or others
- Easy to implement, and relatively efficient (& easily parallelized!)
- Empirically, often **better** than traditional spectral methods
 - Surprising given embedded space is 1-dimensional!

References

- "Semi-Supervised Classification of Network Data Using Very Few Labels", <u>https://lti.cs.cmu.edu/sites/default/files/research/reports/2009/cmultiog</u> <u>017.pdf</u>
- "New Regularized Algorithms for Transductive Learning", <u>http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.220.42&rep=rep1&type=pdf</u>
- "Semi-supervised Learning in Gigantic Image Collections", http://papers.nips.cc/paper/3633-semi-supervised-learning-in-giganticimage-collections.pdf
- "Revisiting Semi-Supervised Learning with Graph Embeddings", <u>http://proceedings.mlr.press/v48/yanga16.pdf</u>