CSCl 4360/6360 Data Science |l
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* What is an embedding?
* Transformation
* Reveals [ preserves

* Mapping

Embedd




Embeddings

* Principal Components Analysis (PCA) Sinear

* Sparse & Kernel PCA (Thursday!) >parse &
* Independent Components Analysis (ICA) lon-Gaussian
* Non-negative Matrix Factorization (NMF) \on-negative
* Locally-linear Embeddings (LLE) Nonlinear

_— . Sparse &
* Dictionary Learning (next Thursday!) Nonlinear

Million Dollar Question:

How do you know the embedding is right?




Embeddings

* If you're performing
classification, it's pretty
easy to know if your
embedding is “right”

* Error decreases?
* Error increases?

* What about
unsupervised learning?

p

Training Sample

Test Sample




Assumptions

* Choice of embedding -> Assumptions about the data

* What if we knew something about the data?

e “Side information”: we don’t know what classes/clusters the data
belong to, but we do have some notion of similarity




Side Information

* DefineasetS
» for every pair x;and x; that are similar, we put this pairin S

* “Similar” is user-defined; can mean anything

* Likewise have aset D
* for every pair x;and x; that are dissimilar, we put this pairin D
* can consist of every pair not in S, or specific pairs if information is available

* We have this similarity information; what can we do with it?




Distance Metrics

* Goal: use side-information to learn
a hew distance metric

* Encode our side-information in a
"metric” A

* Generalization of Euclidean
distance

* Note when A =/, this is regular
Euclidean distance

* When A is diagonal, thisis a
"weighted” Euclidean distance

* When data are put through nonlinear
basis functions ¢, nonlinear metrics
can be learned




Distance Metrics

* Quick Review: What constitutes a valid distance metric?

: Non-negativity
. Symmetry
> Triangle Inequality
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“Pseudometric”




Form of a Metric

* Learning metric A (G in
figure) also equivalent to
replacing each point x with
A%2x and using standard
Euclidean distance

* It's an embedding!

* Learning a space inhabited diagonal G
by your data

* Bonus: easy to incorporate |
new data! (unlike LLE or :
others) E




Learning a Metric (1)

* Goal: Define a metric A that respects
constraint sets S and D

* Simple enough: constrain all pairsin = 1311y § : Hf . ?j‘ ‘?4
S to have small distances A

e |s that all? Z,§y€s

* Nope - trivially solved with A = 0




Learning a Metric (2)

* Additional constraint: use pairs in D E Hf il g" ‘A =

to guarantee non-zero distances

. . . T,yeD

* (choice of 1is arbitrary; any other
constant ¢ would have the effect of

replacing A with c2A)
* Is that all?

* Nope — need to ensure A is positive
semi-definite (why?)




Aside!

* We used squared Euclidean distance in the first constraint

. Ty 2
min 3 17— 13
R TISI)
* But not in the second! Why?

D llZ—glax1

Z,§€D
* Squared distance in 2" constraint would always result in rank-1 A,
i.e. the data would always be projected on a line

* (proof left as an exercise!)




Learning a Metric (3)

* A third constraint: keep A
positive semi-definite A0
* (this means the diagonal is
always = o)

* If Ais PSD, its eigenvectors b T
and eigenvalues exist and are A=XAX

real
 Set any negative eigenvalues

too A, == diag(maX{O, >\1}7 TR {07 An})
* Compute A’ i XA,XT




Learning a Metric

* \We have our constraints!

e How do we learn A?

* (Hint) Linear in
parameters of A

* (HINT) First two
constraints are verifiably
convex




Convex Optimization

* For diagonal A, this is easy

> i — )
(zi,x;)ED

* (just a fancy reformulation of the original constraints)

* Minimizing g is equivalent to solving original problem, up to
multiplication of A by a positive constant

* Gradient descent! (step-size intrinsically enforces PSD of A)




Convex Optimization

* Trickier for full A

: Iterate
* Gradient ascent +
Iterate

iterative projections A= argming {||A — A||r : A € C1}
A:=argming {||A" — Al|p : A" € C3}
. For this to work until A converges

constraints needed to A=A+ a(Vag(A)) vy
be reversed until convergence




Constraint Reformulation

Previous Current

' r — |2 r— g4 <1
min > llz—a3 > lE— 3 <

Z,yes T e S
> IE=7lla>1 max » ||~ glla
Z, gl x,yeD
A>0 A=0




Iterate

Iterate
A:=argming/ {||A" — A||r : A" € C1}
A:=argming/ {||4A" — A||r : A" € Cs}
until A converges
A=A+ a(Vag(A)1v.s

until convergence

Iterate
Iterate

Do lE-gE <t B A0

z,yeS

until A converges

A=A+ oV D llE il

T,yeD
until convergence
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Experiments

* Generated artificial 3D
data
e 2class
* 3 class
 Separated by y-axis
* Separated by z-axis

2-class data (original)

Original 2—class data

3-class data (original)




Experiments

2—class data (original) 2—-class data projection (Newton)
2-class data projection (IP)
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Experiments

3-class data (original) 3-class data projection (Newton) 3-class data projection (IP)




Experiments

3-class data (original) 3-class data projection (Newton) 3-class data projection (IP)




Experiments

Original 2—class data Porjected 2-class data




Experiments

Original data Projected data




Other Applications

* VVideo scene
segmentation

* Identifying
dynamic
textures in
videos




Other Formulations

* Deep metric learning

 Differentiates different metric
constraints
* Contrastive
* Triplet

; (a) Triplet: before. (b) Triplet: after.
e Lifted structure

Lifted struct loss




Other Formulations

* Adaptive densities

Gazelles: with people

* Introduces "magnet loss”
(how does it work?)

* Optimizes over entire
neighborhoods simultaneously

* Reduces distribution overlap,
rather than just pairs or triplets

* Requires ground-truth labels

o SRR NSNS ] SESSEEIN, VNS RN
100k 200k 200k 400k
Dogs ImageNet Attributes




. miny, > IL(z —y)||?
Other Formulations [y

* Large-scale metric learning minz Z)ESIIL(w—y)Il2+A( Z)epém,y
T,y z,y

o If feature space is extremely large, [EEZEEEIACEEN RS Ty SN R (XN
iterative eigen-decompositions are K
el L L A v, > |L(c-)[+A Y max(0,1- |L(z—y)|?)
* Nested convex optimization is a (2,y)€5 (.y)ED
deal-breaker

* Represent metricA=L"L
* Learn L directly, instead of A

* Use hinge loss to induce
unconstrained optimization

 Parameter server for SGD-based
metric updates




Questions?




Updates

* Assignment 2 is being examined
* Some grade changes already made (re: effects of reqularization by
imposing Gaussian prior on weights); check eLC
* Final project proposals due Thursday
* 1-2 pages, max
* Clear, cogent, concise: tell me exactly what you're planning to do, and
exactly how you’ll measure success/failure

* Students in 6360: Make sure you're also identifying potential submission
venues

* How is Assignment 4 going?
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