CSCI 4360/6360 Data Science II

Metric Learning

Previously...

- Spectral clustering
- Define graph (affinities -> Laplacian)
- 2. Compute eigenvectors (*embedding*)
- Cluster embeddings trivially (K-means)

Embeddings

- What is an embedding?
- Mapping
- Transformation
- Reveals / preserves "structure"

Embedding

 $f: X \to \overline{Y}$

Embeddings

- Principal Components Analysis (PCA)
 - Sparse & Kernel PCA (Thursday!)
- Independent Components Analysis (ICA)
- Non-negative Matrix Factorization (NMF)
- Locally-linear Embeddings (LLE)
- Dictionary Learning (next Thursday!)

Linear

Sparse &

lon-Gaussian

Non-negative

Nonlinear

Sparse & Nonlinear

Million Dollar Question:

How do you know the embedding is right?

Embeddings

• If you're performing classification, it's pretty easy to know if your embedding is "right"

• Error increases?

What about unsupervised learning?

Assumptions

- Choice of embedding -> Assumptions about the data
- What if we knew something about the data?
- "Side information": we don't know what classes/clusters the data belong to, but we do have some notion of similarity

Side Information

- Define a set S
 - for every pair x_i and x_j that are similar, we put this pair in S
- "Similar" is user-defined; can mean anything
- Likewise have a set D
 - for every pair x_i and x_j that are **dis**similar, we put this pair in D
 - can consist of every pair not in S, or specific pairs if information is available
- We have this similarity information; what can we do with it?

Distance Metrics

- Goal: use side-information to learn a new distance metric
- Encode our side-information in a "metric" A
- Generalization of Euclidean distance
 - Note when A = I, this is regular Euclidean distance
 - When A is diagonal, this is a "weighted" Euclidean distance
 - When data are put through nonlinear basis functions ϕ , nonlinear metrics can be learned

$$d(\vec{x}, \vec{y}) = d_A(\vec{x}, \vec{y})$$

$$=||\vec{x}-\vec{y}||_A$$

$$= \sqrt{(\vec{x} - \vec{y})^T A(\vec{x} - \vec{y})}$$

$$= \sqrt{(\phi(\vec{x}) - \phi(\vec{y}))^T A(\phi(\vec{x}) - \phi(\vec{y}))}$$

Distance Metrics

• Quick Review: What constitutes a valid distance metric?

$$d(\vec{x}, \vec{y}) \ge 0$$

$$d(\vec{x}, \vec{y}) = d(\vec{y}, \vec{x})$$

$$d(\vec{x}, \vec{z}) \le d(\vec{x}, \vec{y}) + d(\vec{y}, \vec{z})$$

$$-d(\vec{x}, \vec{y}) = 0 \Leftrightarrow x = y$$

"Pseudometric"

Form of a Metric

- Learning metric A (G in figure) also equivalent to replacing each point x with A^{1/2}x and using standard Euclidean distance
- It's an embedding!
- Learning a space inhabited by your data
 - Bonus: easy to incorporate new data! (unlike LLE or others)

Learning a Metric (1)

- Goal: Define a metric A that respects constraint sets S and D
- Simple enough: constrain all pairs in S to have small distances
- Is that all?
- Nope trivially solved with A = O

$$\min_{A} \sum_{\vec{x}, \vec{y} \in S} ||\vec{x} - \vec{y}||_A^2$$

Learning a Metric (2)

- Additional constraint: use pairs in D to guarantee non-zero distances
- (choice of 1 is arbitrary; any other constant c would have the effect of replacing A with c²A)
- Is that all?
- Nope need to ensure A is positive semi-definite (why?)

Aside!

• We used squared Euclidean distance in the first constraint

$$\min_{A} \sum_{\vec{x}, \vec{y} \in S} ||\vec{x} - \vec{y}||_A^2$$

But not in the second! Why?

$$\sum_{\vec{x}, \vec{y} \in D} ||\vec{x} - \vec{y}||_A \ge 1$$

- Squared distance in 2nd constraint would always result in rank-1 A,
 i.e. the data would always be projected on a line
- (proof left as an exercise!)

Learning a Metric (3)

- A third constraint: keep A positive semi-definite
 - (this means the diagonal is always ≥ o)
- If A is PSD, its eigenvectors and eigenvalues exist and are real
- Set any negative eigenvalues to o Λ
- Compute A'

$$A \succeq 0$$

$$A = X\Lambda X^T$$

$$\Lambda' = \operatorname{diag}(\max\{0, \lambda_1\}, ..., \{0, \lambda_n\})$$

$$A' = X\Lambda'X^T$$

Learning a Metric

- We have our constraints!
- How do we learn A?
- (Hint) Linear in parameters of A
- (HINT) First two constraints are verifiably convex

$$\min_{A} \sum_{\vec{x}, \vec{y} \in S} ||\vec{x} - \vec{y}||_{A}^{2}$$

$$\sum_{\vec{x}, \vec{y} \in D} ||\vec{x} - \vec{y}||_{A} \ge 1$$

$$A \succeq 0$$

Convex Optimization

• For diagonal A, this is easy

$$g(A) = g(A_{11}, \dots, A_{nn}) = \sum_{(x_i, x_j) \in \mathcal{S}} ||x_i - x_j||_A^2 - \log \left(\sum_{(x_i, x_j) \in \mathcal{D}} ||x_i - x_j||_A \right)$$

- (just a fancy reformulation of the original constraints)
- Minimizing g is equivalent to solving original problem, up to multiplication of A by a positive constant
- Gradient descent! (step-size intrinsically enforces PSD of A)

Convex Optimization

- Trickier for full A
- Gradient ascent + iterative projections
- For this to work, constraints needed to be reversed

Iterate

Iterate

$$A := \arg\min_{A'} \{||A' - A||_F : A' \in C_1\}$$

 $A := \arg\min_{A'} \{||A' - A||_F : A' \in C_2\}$
until A converges

$$A := A + \alpha(\nabla_A g(A))_{\perp \nabla_A f}$$

until convergence

Constraint Reformulation

Previous

$$\min_{A} \sum_{\vec{x}, \vec{y} \in S} ||\vec{x} - \vec{y}||_{A}^{2} \longrightarrow \sum_{\vec{x}, \vec{y} \in S} ||\vec{x} - \vec{y}||_{A}^{2} \le 1 \qquad \qquad C_{1}$$

$$\sum_{\vec{x}, \vec{y} \in D} ||\vec{x} - \vec{y}||_{A} \ge 1 \longrightarrow \max_{A} \sum_{\vec{x}, \vec{y} \in D} ||\vec{x} - \vec{y}||_{A} \longrightarrow g(A)$$

$$A \succeq 0 \longrightarrow A \succeq 0 \qquad C_{2}$$

GA + IP

Iterate

Iterate

$$A := \arg\min_{A'} \{||A' - A||_F : A' \in C_1\}$$

 $A := \arg\min_{A'} \{||A' - A||_F : A' \in C_2\}$
until A converges

$$A := A + \alpha(\nabla_A g(A))_{\perp \nabla_A f}$$

until convergence

Iterate

Iterate

$$\sum_{\vec{x}, \vec{y} \in S} ||\vec{x} - \vec{y}||_A^2 \le 1 \quad \blacksquare \quad A \succeq 0$$

until A converges

$$A := A + \alpha \nabla \max_{A} \sum_{ec{x}, ec{y} \in D} ||ec{x} - ec{y}||_{A}$$

until convergence

GA + IP

- Generated artificial 3D data
 - 2 class
 - 3 class
 - Separated by y-axis
 - Separated by z-axis

Other Applications

- Video scene segmentation
- Identifying dynamic textures in videos

Other Formulations

- Deep metric learning
- Differentiates different metric constraints
 - Contrastive
 - Triplet
 - Lifted structure

Other Formulations

- Adaptive densities
- Introduces "magnet loss" (how does it work?)
 - Optimizes over entire neighborhoods simultaneously
 - Reduces distribution overlap, rather than just pairs or triplets
- Requires ground-truth labels

Other Formulations

$$\begin{aligned} \min_{L} \quad & \sum_{(x,y) \in \mathcal{S}} \|L(x-y)\|^2 \\ s.t. \quad & \|L(x-y)\|^2 \geq 1, \forall (x,y) \in \mathcal{D} \end{aligned}$$

- Large-scale metric learning
 - If feature space is extremely large, iterative eigen-decompositions are a deal-breaker

Nested convex optimization is a deal-breaker

- Represent metric $A = L^T L$
 - Learn L directly, instead of A
- Use hinge loss to induce unconstrained optimization
- Parameter server for SGD-based metric updates

$$\min_{L} \sum_{(x,y) \in \mathcal{S}} \|L(x-y)\|^2 + \lambda \sum_{(x,y) \in \mathcal{D}} \max(0, 1 - \|L(x-y)\|^2)$$

Questions?

Updates

- Assignment 2 is being examined
 - Some grade changes already made (re: effects of regularization by imposing Gaussian prior on weights); check eLC
- Final project proposals due Thursday
 - 1-2 pages, max
 - Clear, cogent, concise: tell me exactly what you're planning to do, and exactly how you'll measure success/failure
 - Students in 6360: Make sure you're also identifying potential submission venues
- How is Assignment 4 going?

References

- Xing, Eric P., Michael I. Jordan, Stuart J. Russell, and Andrew Y. Ng.
 "Distance metric learning with application to clustering with side-information" http://papers.nips.cc/paper/2164-distance-metric-learning-with-application-to-clustering-with-side-information.pdf
- Teney, Damien, Matthew Brown, Dmitry Kit, and Peter Hall. "Learning similarity metrics for dynamic scene segmentation" http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Teney_Learning_Similarity_Metrics_2015_CVPR_paper.pdf
- Oh Song, Hyun, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. "Deep metric learning via lifted structured feature embedding" http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Song_Deep_Metric_Learning_CVPR_2016_paper.pdf