CSCl 4360/6360 Data Science |l

Backpropagation

Artificial Neural Networks

* Not a new concept!

* Roots as far back as 1940s

work.ln unsuperivsed 1986 paper by Rumelhart
-

Icaing et al—fastest

* Took off in 1980s and | ba.d;pro.pagatic.m. |
19905 N a gorlt m since origina

X1 1970s version
- vvdned In 2000S
* “Biologically-inspired”
computing
* May or may not be true

 Shift from rule-based to
emergent learning

Multilayer networks

* Simplest case: classifier is a
multilayer network of logistic
units

* Each unit takes some inputs
and produces one output
using a logistic classifier

* Output of one unit can be
the input of other units

Hidden nodes layer

LR as a Graph

* Define output o(x) =

Sigmoid Unit

net = 2. W; X;
=0

L9

o = G(ner) =
l +e

-ner

Multilayer networks

* Simplest case: classifier is a
multilayer network of legistic Hidden nodes layer
units that perform some
differentiable computation

* Each unit takes some inputs
and produces one output
. L

* Output of one unit can be
the input of other units

Learning a multilayer network

* Define a loss (simplest case: squared error)
 But over a network of “units” that do simple computations

Jxy(@) =) (y* = §°)?

7
* Minimize loss with gradient descent

* You can do this over complex networks if you can take the gradient of each
unit: every computation is differentiable

Sigmoid Unit

O

o = G(ner) = =
lL+e

ANNSs in the gos

* In the 9os: mostly 2-layer networks (or specialized "deep” networks
that were hand-built)

* Worked well, but training was slow

PROC. OF THE IEEE, NOVEMBER 1998

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
6@28x28

|
Full wnAection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

ANNSs in the go’s

PROC. OF THE IEEE, NOVEMBER 1998

C3:f. maps 16@10x10

INPUT C1: feature maps S4: 1. maps 16@5x5
6@28x28

32x32 . cs:la

yer
o Fe:layer QUTRUT

|
| Fulloonr{eclicn | Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

tional Neural Network, here for digits recognition. Each plane is a feature map, i.c. a set of units
entical.

SVM with
polynomial
kernel: 98.9 -
99.2% accurate

SVM poly 4
RS-SVM poly 5
[dist) V=SVM poly 8

[16x18] LeNet-1
LeNet-4
LeNet-4 / Local
LeNet-4 / K-NN
LeNet-5

[dist] | aNpt=5

[dist] Boosted LeNet-4

Custom CNN:

98.3-99.3%
accurate

Nomenclature

* Backpropagation: refers only to the method for computing the
gradient of a function

* Is NOT specific to multilayer neural networks (in principle, can compute
gradients for any function)

* Stochastic gradient descent: conducts learning using the derived
gradient

* Hence, you can run SGD on gradients you derive manually, or through
backprop

Notation

* “Borrowing” from

* William Cohen at Carnegie Mellon (author of SSL algorithm you
implemented in HW4)

* Michael Nielson of http://neuralnetworksanddeeplearning.com/

Notation

Notation

* Each digit is 28x28 = 784
dimensions [inputs

Notation

Notation

Computation is “feedforward”

for (=1 2 S e

ad =ocwa! +bh.

Notation

* Set up a cost function, C

C =3 ly(a) - a* (@)

* Rewrite as an average

1 1
C:ﬁzcw where Cg;:§”y—CLLH2

Allows us to compute partial derivatives dC,/dw and dC,/db for
single training examples, then recover dC/dw and dC/db by
averaging over training examples.

Notation

BackProp: last layer

Matrix form:

st =V,C 0o ().

¢ onents are
components are [49
6ajl‘

The Hadamard Product: just
element-wise multiplication

Level [for [=3,...,L
Matrix: w!
Vectors:
bias b!
activation a'
pre-sigmoid activ: Z!
target output y
“local error” &'

BackProp: last layer

Matrix form for square loss:

§" = (a" —y) ©6'(")

Level [for [=3,...,L
Matrix: w!

Vectors:

* bias b

activation a'
pre-sigmoid activ: Z!
target output y
“local error” &'

BackProp: error at level [in terms of

error at level [+2

61 — ((wl+1)T51+1) 0 O',(Zl)

which we can use to compute

ob, 7 o
3 oC

— = QinOout

Level [for [=3,...,L
Matrix: w!
Vectors:
_ L _ Ll
14!
oid activ: Z/
tput y
“local error”é!

BackProp: Summary

o' (z%)

o = (w115 @
Level [for [=3,...,L
{)(- 51 Matrix: w!
= (

f)b Vectors:

bias b!
{)C' - (1 15l activation a!

’)v 9 l\ (J - o o [

ow;, pre-sigmoid activ: z
target output y
“local error” &

Full Backpropagation

1. Input x: Set the corresponding activation a! for the input

layer.

. Feedforward: Foreach [= 2,3, ..., L compute ! = wla!~! + &/
and d = o(2).
Use SGD to update the

weights according to
the gradients

. Output error §“: Compute the vector §* = V,C © ¢'(z%).

. Backpropagate the error: Foreach/=L—-1,L—-2,...,2

compute &' = (WHHT6"1) © ¢/(Z).

. Output: The gradient of the cost function is given by

Example

* Simple equation

flz,y,2) = (x+y)z
* Some example inputs

* X=-2

YieS

° Z='[|.

[slightly less simple] Example

1

- 2D Logistic Regression, P(Y =1|X) = 1+ exp(—(wo + 5, wi X;))
—\Wo i i

with a bias term

Weight updates for multilayer ANN

* For nodes k in output layer L:

* For nodesjin hidden layer h:

* What happens as the layers get further and further from the output
layer?

Gradients are unstable A

Derivative of sigmoid function

* If weights are usually < 1, and
we are multiplying by many,
many such numbers...

Understanding the difficulty of training deep feedforward neural networks

Xavier Glorot Yoshua Bengio
DIRO, Université de Montréal, Montréal, Québec, Canada

-0.05 0 0.05
Backpropagated gradients

Histogram of gradients in a 5-layer network for an
artificial image recognition task

Understanding the difficulty of training deep feedforward neural networks

Sigmoid depth 5
Sigmoid depth 4
Tanh

Softsign
Softsign N

Tanh N
Pre-training

o
o~
&
o
—
—
L
-~
v
@
-~

40|

1.0 15
exemples seen

It's easy for sigmoid units to saturate

Learning rate approaches zero,
and neuron gets “stuck”

n

= W X-
ner i>::0 Vi Xj 0 = G(net) =

Derivative of sigmoid function

It's easy for sigmoid units to saturate

It's easy for sigmoid units to saturate

* If there are 5oo non-zero inputs initialized with a Gaussian ~N(o,1)

then the SD is m ~ 99 4

It's easy for sigmoid units to saturate

L]
=
<
>
=
<
=
<
=
g=]
(&}
<

4A0 66 86 16

Epochs of 20k mini-batch updates

e Saturation visualization

from Glorot & Bengio 2010 - Bottom layer still
stuck for first 100

- using a smarter epochs
initialization scheme

What's Different About Modern ANNSs?

Some key differences

* Use of softmax and entropic loss instead of quadratic loss

* Use of alternate non-linearities
* reLU and hyperbolic tangent

* Better understanding of weight initialization

* Data augmentation
* Especially forimage data

* Ability to explore architectures rapidly

Cross-entropy loss

Cross-entropy loss

Figure 5: Cross entropy (black, surface on top) and
quadratic (red, bottom surface) cost as a function of two
weights (one at each layer) of a network with two layers,
W respectively on the first layer and W5 on the second,
output layer.

Cross-entropy loss after a softmax
layer gives a very simple,

S Oft m aX O Ut p Ut | aye r numerically stable gradient: (y - at)

L e

a

J - Zkezi’

Some key differences

* Use of softmax and entropic loss instead of quadratic loss.

 Often learning is faster and more stable as well as getting better
accuracies in the limit

* Use of alternate non-linearities
* Better understanding of weight initialization

* Data augmentation
* Especially forimage data

* Ability to explore architectures rapidly

Some key differences

* Use of softmax and entropic loss instead of quadratic loss.

* Often learning is faster and more stable as well as getting better
accuracies in the limit

* Use of alternate non-linearities
* reLU and hyperbolic tangent

* Better understanding of weight initialization

* Data augmentation
* Especially forimage data

* Ability to explore architectures rapidly

Alternative non-linearities

* Changes so far

* Changed the loss from square error to cross-entropy (no effect at test
time)

* Proposed adding another output layer (softmax)

* A new change: modifying the nonlinearity
* The logistic is not widely used in modern ANNs

1er = 2 W: X:)
ner ’_)::btl.\, 0 = G(net) =

Alternative non-linearities

* A new change: modifying the nonlinearity
* The logistic is not widely used in modern ANNs

* Alternative #1: tanh . tanh function
* Like logistic, but shifted to range [-1, +1]

Understanding the difficulty of training deep feedforward neural networks

Sigmoid depth 5
Sigmoid depth 4
Tanh

Softsign
Softsign N

Tanh N
Pre-training

o
o~
&
o
—
—
L
-~
v
@
-~

40|

1.0 15
exemples seen

Alternative non-linearities

* A new change: modifying the nonlinearity
* The logistic is not widely used in modern ANNs

* Alternative #1: tanh
. R ! — log(exp(x) + 1)
* Like logistic, but shifted to range [-1, +1] — max(0.x

' — /(1 + exp(-x)
e Alternative #2: ReLU expl-x
* Linear with cut-off at zero

* Alternative #2.5: “Soft” ReLU
e Doesn’t saturate (at one end)
* Sparsifies outputs
* Helps with vanishing gradient

Some key differences

* Use of softmax and entropic loss instead of quadratic loss.

* Often learning is faster and more stable as well as getting better
accuracies in the limit

* Use of alternate non-linearities
* reLU and hyperbolic tangent

* Better understanding of weight initialization

* Data augmentation
* Especially forimage data

* Ability to explore architectures rapidly

It's easy for sigmoid units to saturate

* If there are 5oo non-zero inputs initialized with a Gaussian ~N(o,1)

thenthe SD is m ~ 99 4

» Common heuristics for initializing weights

N (0 1) [(—1 1)
" /# of inputs V/# of inputs’ +/# of inpuss

Initializing to avoid saturation

* In Glorot and Bengio (2010) they suggest weights if level j (with n;
inputs) from

V6 V6]
VT + Mg , Vi + N
TYPE Shapeset MNIST CIFAR-10 ImageNet

WNU[—

Softsign 16.27 1.64 55.78 69.14

) Softsign N 16.06 1.72 53.8 68.13
Tanh 27.15 1.76 55.9 70.58
15.60 1.64 52.92 68.57

Summary

* Backpropagation makes training deep neural networks possible

* Known since 1970s, understood since 1980s, used since 1990s, tractable
since 2010S

* Feed-forward versus backward propagation
 Feed-forward evaluates the network’s current configuration, J()
* Backpropagation assigns error in J() to individual weights

* Each layer considered a function of its inputs
» Differentiable activation functions strung together
* Chainrule of calculus

* Modern deep architectures made possible due to logistical tweaks
* Vanishing / Exploding gradient and new activation functions

Course Details

* How is Assignment 5 going? Due Thursday!

* How is the project going?

References

* "A gentle introduction to backpropagation”,
http://numericinsight.com/uploads/A Gentle Introduction to Bac
kpropagation.pdf

* "Deep Feed-Forward Networks”, Chapter 6, Deep Learning Book,
http://www.deeplearningbook.org/contents/mlp.html

* “Backpropagation, Intuitions”, C5231n "CNNs for Visual
Recognition”, https://cs231n.github.io/optimization-2/

* "How the Backpropagation Algorithm works”, Chapter 2, Neural
Networks and Deep Learning,
http://neuralnetworksanddeeplearning.com/

