CSCI 4360/6360 Data Science II Backpropagation

Artificial Neural Networks

• Not a new concept!

- Roots as far back as 1940s work in unsuperivsed
 - learning
- Took off in 1980s and 1990s
- vvaned in 2000s
- "Biologically-inspired" computing
 - May or may not be true
- Shift from rule-based to emergent learning

1986 paper by Rumelhart *et al*—fastest backpropagation algorithm since original 1970s version

Multilayer networks

- Simplest case: classifier is a multilayer *network* of *logistic units*
- Each *unit* takes some inputs and produces one output using a logistic classifier
- Output of one unit can be the input of other units

LR as a Graph

• Define output *o*(*x*) =

$$\sigma(w_0 + \sum_i w_i X_i) = \frac{1}{1 + \exp(-(w_0 + \sum_i w_i X_i))}$$

Multilayer networks

- Simplest case: classifier is a multilayer network of logistic units that perform some differentiable computation
- Each *unit* takes some inputs and produces one output using a logistic classifier
- Output of one unit can be the input of other units

Learning a multilayer network

- Define a loss (simplest case: squared error)
 - But over a network of "units" that do simple computations

$$J_{X,y}(\vec{w}) = \sum (y^i - \hat{y}^i)^2$$

- Minimize loss with gradient descent
 - You can do this over complex networks if you can take the *gradient* of each unit: every computation is *differentiable*

ANNs in the 90s

- In the 9os: mostly 2-layer networks (or specialized "deep" networks that were hand-built)
- Worked well, but training was *slow*

ANNs in the 90's

Nomenclature

- Backpropagation: refers only to the method for computing the gradient of a function
 - Is NOT specific to multilayer neural networks (in principle, can compute gradients for any function)
- Stochastic gradient descent: conducts learning using the derived gradient
 - Hence, you can run SGD on gradients you derive manually, or through backprop

• "Borrowing" from

- William Cohen at Carnegie Mellon (author of SSL algorithm you implemented in HW4)
- Michael Nielson of <u>http://neuralnetworksanddeeplearning.com/</u>

504192

• Each digit is 28x28 = 784 dimensions / inputs

Vectorize: w^l is the weight matrix for layer l

 w_{jk}^{l} is the weight from the k^{th} neuron in the $(l-1)^{\text{th}}$ layer to the j^{th} neuron in the l^{th} layer

$$a_j^l = \sigma\left(\sum_k w_{jk}^l a_k^{l-1} + b_j^l\right)$$

$$a^l = \sigma(w^l a^{l-1} + b^l).$$

$$z^l \equiv w^l a^{l-1} + b^l$$

Computation is "feedforward"

for *l*=1, 2, ... *L*:

$$a^l = \sigma(w^l a^{l-1} + b^l).$$

16

• Set up a cost function, C $C = \frac{1}{2n} \sum_{x} ||y(x) - a^{L}(x)||^{2}$ • Rewrite as an average $C = \frac{1}{n} \sum_{x} C_{x} \quad \text{where} \quad C_{x} = \frac{1}{2} ||y - a^{L}||^{2}$

> Allows us to compute partial derivatives dC_x/dw and dC_x/db for single training examples, then recover dC/dw and dC/db by averaging over training examples.

layer 1

layer 2

 b_{3}^{2}

layer 3

 a_{1}^{3}

18

BackProp: last layer

$$\delta_j^L = \frac{\partial C}{\partial a_j^L} \sigma'(z_j^L).$$

$$\delta^{L} = \nabla_{a} C \odot \sigma'(z^{L}).$$
onents are $\frac{\partial C}{\partial a_{j}^{L}}$
The Hadamard Product: just element-wise multiplication

Level *l* for *l*=1,...,*L* Matrix: *w*^{*l*} Vectors:

- bias b^l
- activation *a*^{*l*}
- pre-sigmoid activ: *z*^{*l*}
- target output y
- "local error" δ^l

BackProp: last layer

$$\delta_j^L = \frac{\partial C}{\partial a_j^L} \sigma'(z_j^L).$$

Matrix form for square loss:

$$\delta^L = (a^L - y) \odot \sigma'(z^L).$$

Level *l* for *l=1,...,L* Matrix: *w*^{*l*} Vectors:

- bias b^l
- activation *a*^{*l*}
- pre-sigmoid activ: *z*^{*l*}
- target output y
- "local error" δ^l

BackProp: error at level *l* in terms of error at level *l*+1

$$\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$$

which we can use to compute

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \implies \frac{\partial C}{\partial b} = \delta,$$

$$\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l.$$

$$\frac{\partial C}{\partial w} = a_{\rm in} \delta_{\rm out}$$

BackProp: Summary

$$\delta^L = \nabla_a C \odot \sigma'(z^L)$$

$$\delta^{l} = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$$

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l$$

$$\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l$$

Level *l* for *l=1,...,L* Matrix: *w^l* Vectors:

- bias *b*^{*l*}
- activation *a*^{*l*}
- pre-sigmoid activ: *z*^{*l*}
- target output *y*
- "local error" δ^l

Full Backpropagation

- Input *x*: Set the corresponding activation *a*¹ for the input layer.
- 2. **Feedforward:** For each l = 2, 3, ..., L compute $z^{l} = w^{l}a^{l-1} + b^{l}$ and $a^{l} = \sigma(z^{l})$.
- 3. **Output error** δ^L : Compute the vector $\delta^L = \nabla_a C \odot \sigma'(z^L)$.
- 4. Backpropagate the error: For each l = L 1, L 2, ..., 2compute $\delta^{l} = ((w^{l+1})^{T} \delta^{l+1}) \odot \sigma'(z^{l})$.
- 5. **Output:** The gradient of the cost function is given by $\frac{\partial C}{\partial w_{jk}^{l}} = a_{k}^{l-1} \delta_{j}^{l} \text{ and } \frac{\partial C}{\partial b_{j}^{l}} = \delta_{j}^{l}.$

Use SGD to update the weights according to ______ the gradients

Example

• Simple equation

$$f(x, y, z) = (x + y)z$$

- Some example inputs
 - X = -2
 - y = 5
 - z = -4

[slightly less simple] Example

• 2D Logistic Regression, $P(Y=1|X) = rac{1}{1+\exp(-(w_0+\sum_i w_i X_i))}$ with a bias term

Weight updates for multilayer ANN

- For nodes *k* in output layer *L*:
- For nodes *j* in hidden layer *h*:

$$\delta_k^L = (t_k - a_k)a_k(1 - a_k)$$

$$\delta_j^h = \sum_k (\delta_j^{h+1} w_{kj}) a_j (1 - a_j)$$

26

• What happens as the layers get further and further from the output layer?

$$\frac{\partial C}{\partial b_1} = \sigma'(z_1) \times w_2 \times \sigma'(z_2) \times w_3 \times \sigma'(z_3) \times w_4 \times \sigma'(z_4) \times \frac{\partial C}{\partial a_4}$$

Understanding the difficulty of training deep feedforward neural networks

Learning rate approaches zero, and neuron gets "stuck"

30

- If there are 500 non-zero inputs initialized with a Gaussian ~N(0,1) then the SD is $\sqrt{500}\approx 22.4$

 Saturation visualization from Glorot & Bengio 2010 -- using a smarter initialization scheme

Bottom layer still stuck for first 100 epochs

33

What's Different About Modern ANNs?

Some key differences

- Use of softmax and entropic loss instead of quadratic loss
- Use of alternate non-linearities
 - reLU and hyperbolic tangent
- Better understanding of weight initialization
- Data augmentation
 - Especially for image data
- Ability to explore architectures rapidly

Cross-entropy loss

$$C = -\frac{1}{n} \sum_{x} \left[y \ln a + (1 - y) \ln(1 - a) \right]$$

$$\frac{\partial C}{\partial w_j} = \frac{1}{n} \sum_{x} x_j (\sigma(z) - y)$$
Cross-entropy loss

Figure 5: Cross entropy (black, surface on top) and quadratic (red, bottom surface) cost as a function of two weights (one at each layer) of a network with two layers, W_1 respectively on the first layer and W_2 on the second, output layer.

Some key differences

- Use of softmax and entropic loss instead of quadratic loss.
 - Often learning is faster and more stable as well as getting better accuracies in the limit
- Use of alternate non-linearities
- Better understanding of weight initialization
- Data augmentation
 - Especially for image data
- Ability to explore architectures rapidly

Some key differences

- Use of softmax and entropic loss instead of quadratic loss.
 - Often learning is faster and more stable as well as getting better accuracies in the limit
- Use of alternate non-linearities
 - reLU and hyperbolic tangent
- Better understanding of weight initialization
- Data augmentation
 - Especially for image data
- Ability to explore architectures rapidly

Alternative non-linearities

- Changes so far
 - Changed the loss from square error to cross-entropy (no effect at test time)
 - Proposed adding another output layer (softmax)
- A new change: modifying the nonlinearity
 - The logistic is not widely used in modern ANNs

Alternative non-linearities

- A new change: modifying the nonlinearity
 - The logistic is not widely used in modern ANNs
- Alternative #1: tanh
 - Like logistic, but shifted to range [-1, +1]

Understanding the difficulty of training deep feedforward neural networks

Alternative non-linearities

- A new change: modifying the nonlinearity
 - The logistic is not widely used in modern ANNs
- Alternative #1: tanh
 - Like logistic, but shifted to range [-1, +1]
- Alternative #2: ReLU
 - Linear with cut-off at zero
- Alternative #2.5: "Soft" ReLU
 - Doesn't saturate (at one end)
 - Sparsifies outputs
 - Helps with vanishing gradient

Some key differences

- Use of softmax and entropic loss instead of quadratic loss.
 - Often learning is faster and more stable as well as getting better accuracies in the limit
- Use of alternate non-linearities
 - reLU and hyperbolic tangent
- Better understanding of weight initialization
- Data augmentation
 - Especially for image data
- Ability to explore architectures rapidly

It's easy for sigmoid units to saturate

• If there are 500 non-zero inputs initialized with a Gaussian ~N(0,1) then the SD is $\sqrt{500}\approx 22.4$

• Common heuristics for initializing weights $N\left(0, \frac{1}{\sqrt{\# \text{ of inputs}}}\right) U\left(\frac{-1}{\sqrt{\# \text{ of inputs}}}, \frac{1}{\sqrt{\# \text{ of inputs}}}\right)$

Initializing to avoid saturation

 In Glorot and Bengio (2010) they suggest weights if level j (with n_j inputs) from

$W \sim U \Big[- rac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}}, rac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}} \Big]$				on clever pre-training initialization schemes, where deep networks were seeded with weights learned from unsupervised strategies	
ТҮРЕ	Shapeset	MNIST	CIFAR-10	ImageNet	
Softsign	16.27	1.64	55.78	69.14	This is not always the solution – but good initialization is very
Softsign N	16.06	1.72	53.8	68.13	
Tanh	27.15	1.76	55.9	70.58	important for deep
Tanh N	15.60	1.64	52.92	68.57	nets!

Summary

- Backpropagation makes training deep neural networks possible
 - Known since 1970s, understood since 1980s, used since 1990s, tractable since 2010s
- Feed-forward versus backward propagation
 - Feed-forward evaluates the network's current configuration, J()
 - Backpropagation assigns error in J() to individual weights
- Each layer considered a function of its inputs
 - Differentiable activation functions strung together
 - Chain rule of calculus
- Modern deep architectures made possible due to logistical tweaks
 - Vanishing / Exploding gradient and new activation functions

Course Details

- How is Assignment 5 going? **Due Thursday!**
- How is the project going?

References

- "A gentle introduction to backpropagation", <u>http://numericinsight.com/uploads/A_Gentle_Introduction_to_Backpropagation.pdf</u>
- "Deep Feed-Forward Networks", Chapter 6, *Deep Learning Book*, <u>http://www.deeplearningbook.org/contents/mlp.html</u>
- "Backpropagation, Intuitions", CS231n "CNNs for Visual Recognition", <u>https://cs231n.github.io/optimization-2/</u>
- "How the Backpropagation Algorithm works", Chapter 2, Neural Networks and Deep Learning, <u>http://neuralnetworksanddeeplearning.com/</u>