CSCI 4360/6360 Data Science II Information Theory

Silicon Valley Looks to Artificial Intelligence for the Next Big Thing

Science NAAAS

Journals

ScienceShots

Topics

Sifter

News

ScienceInsider

Home

f

9

g+

•

Elon Musk: A Latest News outcome' wi Friday, 20 Jun 2014 | 1:0

Tesla Motors and Spac artificial intelligence c fledgling industry, and

Careers

From the Magazine

About News

Quizzes

Artificial intelligence steals money from banking customers

By Adrian Cho | Apr. 1, 2016 , 3:00 AM

Explain Your Deep Network

What do the weights *mean*?

For facial

recognition

For scene segmentation

For multitask learning

For autoencoders

Biggest Drawback of Deep Learning

Interpretability

- Explain what is being learned at layer 47, weight 301
- What is layer 25 learning?
- What determines the network's decisionmaking process for a given input?
- GoogLeNet architecture

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	$112 \times 112 \times 64$	1							2.7K	34M
max pool	3×3/2	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112 K	360M
max pool	3×3/2	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	1 59K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	$14 \times 14 \times 480$	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Table 1: GoogLeNet incarnation of the Inception architecture.

Information-Theoretic Perspective

OPENING THE BLACK BOX OF DEEP NEURAL NETWORKS VIA INFORMATION

Opening the black box of Deep Neural Networks via Information

Ravid Schwartz-Ziv

Edmond and Lilly Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem, 91904, Israel

Naftali Tishby*

School of Engineering and Computer Science and Edmond and Lilly Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem, 91904, Israel RAVID.ZIV@MAIL.HUJI.AC.IL

TISHBY@CS.HUJI.AC.IL

Editor: ICRI-CI

Information Theory

- Dr. Claude Shannon
 - Outlined in 1948 paper, "A Mathematical Theory of Communication"
 - The "Father of Information Theory"
- *Information*: set of possible messages
 - Sent over a noisy channel
 - Receiver reconstructs messages with low probability of error
- Revolutionized digital communication via compression

Information Theory

- Communication
- Information retrieval
- Intelligence gathering
- Signal processing
- Gambling
- Statistics
- Cryptography
- Music composition

Information Theory

- Basic unit of information is the *bit*
 - Not *necessarily* 1s and os, but often takes that incarnation in practice
- Entropy
 - Units of bits per symbol
 - Quantifies *uncertainty* in [discrete] random variable

$$H = -\sum_{i} p_i \log_2(p_i)$$

Entropy

- Can be written in terms of a random variable, Y
- More uncertainty = Higher entropy

$$H_Y = H(Y) = -\sum_y P(Y = y) \log_2 P(Y = y)$$

Entropy

• H(Y) is the **expected number of bits** needed to encode a randomly-drawn value of Y (assuming the most efficient code)

$$H_Y = H(Y) = -\sum P(Y = y) \log_2 P(Y = y)$$

Definition of expected value

$$E[X] = \sum_{i} x_i P(X = x_i)$$

Joint Entropy

Symmetric

X, Y) is the entropy of the pairing of X and Y If X and Y are independent, H(X, Y) = H(X) + H(Y)

$$H(X,Y) = E_{X,Y} \left[-\log P(x,y) \right] = -\sum_{x,y} P(x,y) \log P(x,y)$$

Not to be confused with cross-entropy

Asymmetric

Average number of bits needed to identify an event as having come from either X or Y

$$H(X,Y) = E_X [-\log Y] = H(X) + D_{KL}(X||Y)$$

- *D* is the KL divergence
- (why the notations are the same... no idea)

Conditional Entropy

• Also called *equivocation*

$$H(X|Y) = E_Y [H(X|Y=y)] = -\sum_i P(y_i) \sum_j P(x_j|y_i) \log P(x_j|y_i)$$

• Like conditional probability, a basic property emerges with respect to the joint and marginal entropies

H(X|Y) = H(X,Y) - H(Y)

Mutual Information

 Which all gives rise to the concept of *mutual information*: how much information you can obtain about one random variable by observing another

$$I(X;Y) = H(X) - H(X|Y)$$

If this is o, knowing Y tells us nothing about X

Uncertainty in X

Uncertainty in X, given we have observed Y

• Used extensively in decision trees: which features to branch on

Pick the feature that yields maximum information gain or I(X;Y) (i.e., biggest drop in entropy)

X ₁	X ₂	Y		
Т	Т	Т		
Т	F	Т		
Т	Т	Т		
Т	F	Т		
F	Т	Т		
F	F	F		
F	Т	F		
F	F	F		

What does this have to do with deep learning?

- Multilayer ANNs are [mostly] directed acyclic graphs (DAGs)
- Therefore, we can view them as Markov Chains

Notation

- X: input
- Y: target output
- *T*: intermediate representation
- Any *T* defined as
 - Encoder P(T|X)
 - Decoder *P*(*Y*|*T*)

Markov Chains + Mutual Information

- Data Processing Inequality (DPI) [Cover and Thomas et al, 2006]
- For any three variables that form a Markov chain X -> Y -> Z,

 $I(X;Y) \ge I(X;Z)$

- Intuition
 - Information is generally lost (never gained) when transmitted through a noisy channel
 - "post-processing cannot increase information"
 - "garbage in, garbage out"

The Information Plane

 Given P(X; Y), T is uniquely mapped to a point on the information plane with coordinates [I(X ; T), I(T ; Y)].

$I(X;Y) \ge I(T_1;Y) \ge I(T_2;Y) \ge \dots \ge I(T_k;Y) \ge I(\hat{Y};Y)$ $H(X) \ge I(X;T_1) \ge I(X;T_2) \ge \dots \ge I(X;T_k) \ge I(X;\hat{Y}).$

The Information Plane

• Y-axis: *I*(*T* | *Y*) of *T* encoded in layer *i*

Dual Phases of Training

• Most time is spent in the 2nd phase

Dual Phases of Training

- Phase I: "Drift Phase"
 - Large gradients
 - Small variations
- Phase II: "Diffusion Phase"
 - Small gradients
 - Large inter-batch variations

Training Data

- Amount of training data affected rate of passage through the two phases
- Six points along each line indicate one of the six layers
- Averaged over 50 initializations with random weights

1: Adding hidden layers dramatically reduces the number of training epochs needed for good generalization

2: The compression phase of each layer is shorter when it starts from a previous compressed layer

3: The compression is faster for the deeper (narrower and closer to the output) layers.

4: Even wide hidden layers eventually compress in the diffusion phase. Adding extra width does not help.

Conclusions

 The second phase (diffusion / compression) always resulted in a different configuration of weights

[Un]Surprising Conclusion #1: Many different weight configurations can offer similarly optimal performance [Un]Surprising Conclusion #2: Looking at a single neuron or weight for insight into network performance is meaningless Surprising Conclusion #3: Values of weights alone cannot explain generalizability of deep networks

 Adding hidden layers + Adding more training data both reduce training time required in compression stage

[Un]Surprising Conclusion #4: Data is the best regularizer Surprising Conclusion #5: Rather than focus on explicit regularization & architectural redesigns, exploit encoder & decoder distributions during training; will yield best convergence rate

Course Details

- How is Assignment 5 going? **Due today!**
- How is the project going?

References

- "Opening the black box of Deep Neural Networks via Information", <u>https://arxiv.org/pdf/1703.00810.pdf</u>
 - Blog post summary <u>https://theneuralperspective.com/2017/03/24/opening-</u> <u>the-black-box-of-deep-neural-networks-via-information/</u>
- "Information Theory of Deep Learning" <u>https://www.youtube.com/watch?v=RKvS958AqGY</u>