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ExplainYour Deep Network

Deep Neural Network

Input Layer

Hidden Layer 1

Hidden Layer 2 Hidden Layer 3

Output Layer

For facial
recognition

For scene
segmentation

For multitask
learning

For autoencoders




Biggest Drawback of Deep Learning
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Table 1: GoogLeNet incarnation of the Inception architecture.
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Information-Theoretic Perspective
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Information Theory

e Dr. Claude Shannon

* Outlined in 1948 paper, "A Mathematical
Theory of Communication”

* The “Father of Information Theory”

* Information: set of possible messages
* Sent over a noisy channel

* Receiver reconstructs messages with low
probability of error

* Revolutionized digital communication
via compression




Information Theory

* Communication

* Information retrieval
* Intelligence gathering
* Signal processing

* Gambling

* Statistics

* Cryptography

* Music composition




Information Theory

* Basic unit of information is the bit
* Not necessarily 1s and os, but often takes that incarnation in practice

* Entropy
* Units of bits per symbol
* Quantifies uncertainty in [discrete] random variable

H = - p;logy(p;)




Entropy

* Can be written in terms
of a random variable, Y

* More uncertainty =
Higher entropy

Entropy, H(Y)

Uniform
Max entropy

Deterministic
Zero entropy




Entropy

* H(Y) is the expected number of bits needed to encode a
randomly-drawn value of Y (assuming the most efficient code)

Hy = H ZP = y)log, P(Y = y)

* Definition of expected value

:inPX—




Joint Entropy

X, Y) is the entropy of the pairing of Xand Y
If Xand Y are independent, H(X, Y) = H(X) + H(Y)

H(X,Y)= Exy [-log P(z,y)] = — » P(z,y)log P(x,y)

L,y

Symmetric

* Not to be confused with cross-entropy

. Average number of bits needed to identify an event as having come from
Asymmetric :
either Xor Y

H(X,Y)=Ex|-logY|= H(X)+ Dgr(X]||Y)

* Dis the KL divergence
* (why the notations are the same... no idea)




Conditional Entropy

* Also called equivocation

H(X|Y) = Ey [HX|Y =y)] ZP Yi) ZP%WL)IOgP(%ly@)

J
* Like conditional probability, a baS|c property emerges with respect
to the joint and marginal entropies

H(X|Y)=H(X,Y)— H(®Y)




Mutual Information

* Which all gives rise to the concept of mutual information: how
much information you can obtain about one random variable by
observing another

I(X;Y)=H(X) - H(X|Y)

If this is o, Uncertainty in X,
knowingY tells us given we have
nothing about X observedY

Uncertainty in X




Mutual Information




X
t
H

Mutual Information

* Used extensively in decision trees:
which features to branch on

Y:4Ts Y:1Ts Y:3Ts Y:2Ts
OFs 3Fs 1Fs 2 Fs

* Pick the feature that yields maximum
information gain or I(X;Y) (i.e.,
biggest drop in entropy)

i R R
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What does this have to do with deep

learning?

* Multilayer ANNs are
[mostly] directed acyclic
graphs (DAGs)

* Therefore, we can view
them as Markov Chains

Encoder Decoder
P(T|X) P(Y|T)
S

—




Notation

Encoder Decoder
o X:| P(Y|T

X: input . (Y|T) -
* Y: target output

* T: intermediate
representation

* Any T defined as
* Encoder P(T|X)
* Decoder P(Y|T)




Markov Chains + Mutual Information

 Data Processing Inequality (DPI) [Cover and Thomas et al, 2006]
* For any three variables that form a Markov chain X ->Y ->Z,

I(X;Y) > I(X;2)

* |Intuition

* Information is generally lost (never gained) when transmitted through a
noisy channel

* “post-processing cannot increase information”
* “garbage in, garbage out”




The Information Plane

* Given P(X;Y), T is uniquely mapped to a point on the information
plane with coordinates [ I(X; T), I(T;Y) ].




The Information Plane

2 4 6 8 10 120 2 4 6 8 10 12
I(X;T) I(X;T)
 X-axis: I(X|T) of Tencoded in layer i

* Y-axis: I(T|Y) of T encoded in layer i




Dual Phases of Training

* Most time is spent in the 2" phase




Dual Phases of Traininc

1
10 STD(VW) |-

* Phase I: “Drift
Phase”

* Large gradients
* Small variations

* Phase II: “"Diffusion
Phase”

* Small gradients

* Large inter-batch
variations
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Training Data

* Amount of training
data affected rate of
passage through the
two phases

e Six points along each |
line indicate one of the W
AEVEE

* Averaged over 5o
initializations with
random weights




Key Insights
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Key Insights

One hidden layer Two hidden layers Three hidden Ia

2: The
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Key Insights

One hidden layer Two hidden layers Three hidden Ia

3: The

compression is

faster for the

deeper

(narrowerand 01 234567 8 9 1234567 8 % 123456 7 809
I(X;T) I(X;T) I(X;T)

Closer to the 07 _'Foulrhidden layers | Five hidden layers ;.,. Epochs

output) layers. 051

0.5}

0.0

0.0

0 1 2 3 456 7 8 % 12 34567 8 % 123 4°5¢6 7 809
I(X;T) I(X;T) I(X;T)




Key Insights
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Conclusions

* The second phase (diffusion / compression) always resulted in a
different configuration of weights

* Adding hidden layers + Adding more training data both reduce
training time required in compression stage




Course Details

* How is Assignment 5 going? Due today!

* How is the project going?
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