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Convolutional Neural Networks
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Convolution

* Basically a fancy way of saying
"multiplication”

* Originally devised to make
non-differentiable signals
differentiable

 KDE is related to convolution

* For an input function f and
convolutional filter g:

J®g

scipy.signal.convolve

scipy.signal.convolve(in1, in2, mode="full, method="auto’)
Convolve two N-dimensional arrays.

Convolve in7 and in2, with the output size determined by the mode argument.

Parameters: in1 :array_like
First input.
in2 : array _like
Second input. Should have the same number of dimensions as inT.
mode : str {'full’, valid’, 'same’}, optional
A string indicating the size of the output:

Original pulse

Filter impulse response
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Convolution

 Can be viewed as an
integral transform

* One of the signals is
shifted
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Convolutionin 2D

* 2D convolutions are critical
In computer vision

e Basic idea is still the same
* Choose a kernel
* Run kernel over image

* Build a representation of the
convolved image (likely an
intermediate representation)

* Lots of applications Convolved
Feature




Convolutionin 2D

* Specific kernels can highlight different image features

Input image Convolution Feature map
Kernel

-1 -1 -1
-1 8 -1
-1 -1 -1

* This kernel is an edge detector (others can be smoothers,
sharpeners, etc)




Convolutionin 2D

* Works basically the same
asiD

Source pixel

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

* Filter [ kernel computes a
dot product with
underlying pixels

Convolution filter

* Generates an output (sobel 64

Destination pixel
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Convolutionin 2D
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e Stride dictates how far
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* Padding is used to help
with edge cases

* Pictured: stride of 2,
padding of 1
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Pooling

* Repeated convolutions can mEEEEEEEEE

generate large intermediate
in pooling unit in pooling unit
feature maps Large Nl PO B Large

response response
in detector, in detector

* "Pooling” is used to reduce it unit 3
dimensionality of feature maps
while maintaining most
informative features

* Mean-pooling, max-pooling

* Functions as a regularizer (or an
infinitely-strong prior)




Filters

* Different filter topologies

* Captures long-range pixel dependencies
* Very computationally expensive to implement




Convolution

* Key point: parameter sharing

2 Images dare sparse
* Pixel dependencies
don’t span
arbitrarily large
distances

* Important effects
are local

* Instead of a fully-connected network...
* ...we have one that is more sparsely-connected




Parameter Sharing

FULLY CONNECTED NEURAL NET LOCALLY CONNECTED NEURAL NET

IM hidden units
- 10712 parameter:
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Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters

W
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- Spatial correlation is local
- Better to put resources elsewhere!




CNNs In Practice

e Stacked

e Convolutions
* Pools
e Activations

* Fully-
connected
classification
layer
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CNNs In Practice

 Pattern can be repeated several times

B WAV Wi
Image 128x128x3

* Still “*deep”, but convolutions are the most important part




CNNs In Practice

* Filters are the things that “search” for something in particular in an
Image

* To search for many different things, have many different filters

activation maps

Convolution Layer




CNNs In Practice

* Hyperparameters relevant to CNNs:

* Kernel size
* Usually small

* Stride
* Usually 1 (larger for pooling layers)

 Zero padding depth
* Enough to permit convolutional output size to be the same as input size

* Number of convolutional filters
* Number of “patterns” for the network to search for




CNNs In Practice

* 1x1 convolutions are a special case

* Convolve the feature maps, rather
than the pixel maps

* Function as a dimensionality
reduction step (like pooling)
* Can also be used in pooling




CNN Applications: Object Localization

-y |

* Two discrete steps:

b LocaliZing a >lassification head”
bounding box '
(regression)

The best result now is Faster RCNN with a resnet 101 layer.

R-CNN Fast R-CNN Faster R-CNN

* Identifying the object
(classification)

; Test time per 50 seconds 2 seconds 0.2 seconds
* Generate “region image

Propos aI " (with proposals)
(Speedup) 1x

mAP (VOC 2007) 66.0

e Classification
accuracy




CNN Applications: Single-shot Detection

* Combines region-proposal
(regression) and object
detection (classification) into a
single step

* Use deep-level feature maps to
predict class scores and
bounding boxes

* Families of Single-shot detectors:

* YOLO (single activation map for
both class and region)

* SSD (different activations)
* R-FCN (like Faster R-CNN)
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CNN Applications: Object Segmentation

* Create a map of the detected
object areas

* “Fully-convolutional”
networks

* Substitute fully-connected layer
at end for another convolutional
layer

* Activations show object

* Resolution is lost in
upsampling step
* Skip-connections to bringin
some of the "“lost” resolution

* EXTREME Segmentation
* Replace upsampling with a
complete deconvolution stack

More semantic




CNN Applications: Object Segmentation

* "DeconvNet”: Super-expensive to train
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Conclusions

* CNNs are mostly “"convolutions inside a deep network”
* Main operator (i.e. most important) is the convolution
* Exploits image sparsity: important features are local

* A couple newl[ish] tricks include
* Automatically learning the filters as part of the training process
* Using pooling
* 1x1 convolutions
* Applications include
* Object detection (is there an object)
* Object localization and segmentation (where is the object)
* Object classification (what is the object)
 Zero- and single-shot detectors




Course Details

*l Prejectst
* 3 presentations per day
* g teams—20 minutes hard speaking
time limit
* Presentations are the week after
Thanksgiving break

Final Project Presentations

Final Project Presentations

* Workshop 10: Introduction to deep
learning with TensorFlow

* Jonathan Waring & Xiaojia He

Final Project Presentations

Final Project Deliverables Due
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