CSCl 4360/6360 Data Science |l

Convolutional Neural Networks

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

The Neural Network Z oo pe=rarrn

Noisy Input
9 Nakoy boput Cull Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)
@ Hiddenceu ‘\/.
© FProbablistic Hidden Cell 1 &
iki Hic Ul
@ spiing Hidden Cel Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) ~ Gated Recurrent Unit (GRU)
pa o

* http://www.asimovinstitute.org/ oo

@ Matchinput Output Cell

@ recurrent cell

n | T k-zo o/ | &b
eural-network-Z © s
Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

@ oifferent Memory Cell
/]

Kernel

© Cconvolution or Pool

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) ~ Restricted BM (RBM) Deep Belief Network (DBN)

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

o
oS §
o> %

~

o<

\VAVAVAW

Generative Adversarial Network (GAN) Liquid State Machine (LSM) ~ Extreme Learning Machine (ELM) ~ Echo State Network (ESN)

Kohonen Network (KN) ~ Support Vector Machine (SVM) Neural Turing Machine (NTM)

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

The Neural Network Z oo pe=rarrn

Noisy Input
9 Nakoy boput Cull Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)
@ Hiddenceu ‘\/.
© FProbablistic Hidden Cell 1 &
iki Hic Ul
@ spiing Hidden Cel Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) ~ Gated Recurrent Unit (GRU)
pa o

* http://www.asimovinstitute.org/ oo

@ Matchinput Output Cell

@ recurrent cell

n | T k-zo o/ | &b
eural-network-Z © s
Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

@ oifferent Memory Cell 4 y

Kernel

© Cconvolution or Pool

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) ~ Restricted BM (RBM) Deep Belief Network (DBN)

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCI(

o
Y
0
o\ ~
o0 %

-
~

~,

O

\VAVAVAW

ddversarial Network (GAN) Liquid State Machine (LSM) ~ Extreme Learning Machine (ELM)

Deep Residual Network (DRN) Kohonen Network (KN) ~ Support Vector Machine (SVM) Neural Turing Machine (NTM)

Convolution

* Basically a fancy way of saying
"multiplication”

* Originally devised to make
non-differentiable signals
differentiable

 KDE is related to convolution

* For an input function f and
convolutional filter g:

J®g

scipy.signal.convolve

scipy.signal.convolve(in1, in2, mode="full, method="auto’)
Convolve two N-dimensional arrays.

Convolve in7 and in2, with the output size determined by the mode argument.

Parameters: in1 :array_like
First input.
in2 : array _like
Second input. Should have the same number of dimensions as inT.
mode : str {'full’, valid’, 'same’}, optional
A string indicating the size of the output:

Original pulse

Filter impulse response

T

Filtered signal

AN

| T
150 200

Convolution

 Can be viewed as an
integral transform

* One of the signals is
shifted

[#eea under f(xatt- r.)
f(x)

at-) |
(f+a)t)

f(z)
ai-)
(f+a)it)

Convolutionin 2D

* 2D convolutions are critical
In computer vision

e Basic idea is still the same
* Choose a kernel
* Run kernel over image

* Build a representation of the
convolved image (likely an
intermediate representation)

* Lots of applications Convolved
Feature

Convolutionin 2D

* Specific kernels can highlight different image features

Input image Convolution Feature map
Kernel

-1 -1 -1
-1 8 -1
-1 -1 -1

* This kernel is an edge detector (others can be smoothers,
sharpeners, etc)

Convolutionin 2D

* Works basically the same
asiD

Source pixel

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

* Filter [kernel computes a
dot product with
underlying pixels

Convolution filter

* Generates an output (sobel 64

Destination pixel

ALV VLD

A

A VAN

AN

* Shift kernel and repeat

AV AN

AW

NAVAVAVAWA

Convolutionin 2D

Input Volume (+pad 1) (7x7x3)
:,:,0]

Filter WO

wO[:,:,0

(3x3x3)

e Stride dictates how far

1

-

-1

the kernel moves after
each convolution

0
2
2
2
2
2

* Padding is used to help
with edge cases

* Pictured: stride of 2,
padding of 1

wO([:,:,

1

-

0

0

-1

0

1

Bias b0A1x1x1)
,:,0]

b0 [

Filter W1 (3x3x3)
wll:,:,0]
-1 0

0
1
1

Bias bl (1x1x1)
bl[:,:,0]
0

Output Volume (3x3x2)

Pooling

* Repeated convolutions can mEEEEEEEEE

generate large intermediate
in pooling unit in pooling unit
feature maps Large Nl PO B Large

response response
in detector, in detector

* "Pooling” is used to reduce it unit 3
dimensionality of feature maps
while maintaining most
informative features

* Mean-pooling, max-pooling

* Functions as a regularizer (or an
infinitely-strong prior)

Filters

* Different filter topologies

* Captures long-range pixel dependencies
* Very computationally expensive to implement

Convolution

* Key point: parameter sharing

2 Images dare sparse
* Pixel dependencies
don’t span
arbitrarily large
distances

* Important effects
are local

* Instead of a fully-connected network...
* ...we have one that is more sparsely-connected

Parameter Sharing

FULLY CONNECTED NEURAL NET LOCALLY CONNECTED NEURAL NET

IM hidden units
- 10712 parameter:

——
.
———

\‘\\i
!

Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters

W
|

- Spatial correlation is local
- Better to put resources elsewhere!

CNNs In Practice

e Stacked

e Convolutions
* Pools
e Activations

* Fully-
connected
classification
layer

B __{“GXPOO‘ conv (450w + 10b)

conv (180w + 5b)

non-linear

maxpool

\
@ ==
@ =
& =
& =
& =
& =
® =
& =
& =
58

©
©
©
©
©
5
6
»
8
©

non-linear
fully-connected @

(1600w + 10b)

non-linear

CNNs In Practice

 Pattern can be repeated several times

B WAV Wi
Image 128x128x3

* Still “*deep”, but convolutions are the most important part

CNNs In Practice

* Filters are the things that “search” for something in particular in an
Image

* To search for many different things, have many different filters

activation maps

Convolution Layer

CNNs In Practice

* Hyperparameters relevant to CNNs:

* Kernel size
* Usually small

* Stride
* Usually 1 (larger for pooling layers)

 Zero padding depth
* Enough to permit convolutional output size to be the same as input size

* Number of convolutional filters
* Number of “patterns” for the network to search for

CNNs In Practice

* 1x1 convolutions are a special case

* Convolve the feature maps, rather
than the pixel maps

* Function as a dimensionality
reduction step (like pooling)
* Can also be used in pooling

CNN Applications: Object Localization

-y |

* Two discrete steps:

b LocaliZing a >lassification head”
bounding box '
(regression)

The best result now is Faster RCNN with a resnet 101 layer.

R-CNN Fast R-CNN Faster R-CNN

* Identifying the object
(classification)

; Test time per 50 seconds 2 seconds 0.2 seconds
* Generate “region image

Propos aI " (with proposals)
(Speedup) 1x

mAP (VOC 2007) 66.0

e Classification
accuracy

CNN Applications: Single-shot Detection

* Combines region-proposal
(regression) and object
detection (classification) into a
single step

* Use deep-level feature maps to
predict class scores and
bounding boxes

* Families of Single-shot detectors:

* YOLO (single activation map for
both class and region)

* SSD (different activations)
* R-FCN (like Faster R-CNN)

————— -

.l_ .' r—— — I p—
—
== === |..-.==.

CNN Applications: Object Segmentation

* Create a map of the detected
object areas

* “Fully-convolutional”
networks

* Substitute fully-connected layer
at end for another convolutional
layer

* Activations show object

* Resolution is lost in
upsampling step
* Skip-connections to bringin
some of the "“lost” resolution

* EXTREME Segmentation
* Replace upsampling with a
complete deconvolution stack

More semantic

CNN Applications: Object Segmentation

* "DeconvNet”: Super-expensive to train

4
0/

()
,{Z) 4

7,

A, - o
o, Deco -
A5
) y
(v
/’I
uZ
y ' %
'y
/ |
/
D D
g

Conclusions

* CNNs are mostly “"convolutions inside a deep network”
* Main operator (i.e. most important) is the convolution
* Exploits image sparsity: important features are local

* A couple newl[ish] tricks include
* Automatically learning the filters as part of the training process
* Using pooling
* 1x1 convolutions
* Applications include
* Object detection (is there an object)
* Object localization and segmentation (where is the object)
* Object classification (what is the object)
 Zero- and single-shot detectors

Course Details

*l Prejectst
* 3 presentations per day
* g teams—20 minutes hard speaking
time limit
* Presentations are the week after
Thanksgiving break

Final Project Presentations

Final Project Presentations

* Workshop 10: Introduction to deep
learning with TensorFlow

* Jonathan Waring & Xiaojia He

Final Project Presentations

Final Project Deliverables Due

References

* The Neural Network Zoo
* http://www.asimovinstitute.org/neural-network-zoo/

* Deep Learning Book, Chapter g: "Convolutional Networks”
* http://www.deeplearningbook.org/contents/convnets.html

* Convolution Arithmetic code (for generating awesome gifs)
* https://github.com/vdumoulin/conv_arithmetic

* 1x1 Convolutions
* https://iamaaditya.github.io/2016/03/one-by-one-convolution/

* Al Gitbook

* https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/

