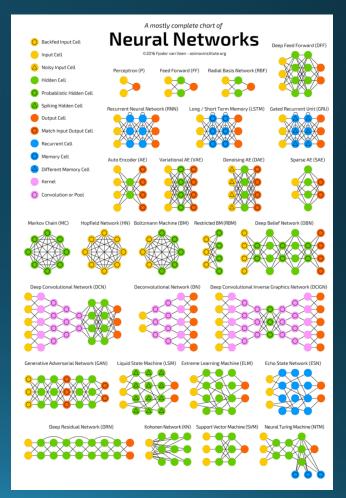
CSCI 4360/6360 Data Science II

Convolutional Neural Networks

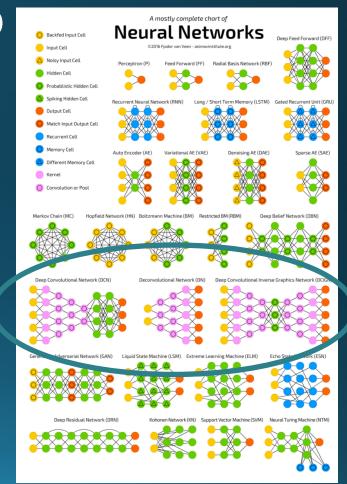
The Neural Network Zoo

• http://www.asimovinstitute.org/ neural-network-zoo/



The Neural Network Zoo

• http://www.asimovinstitute.org/ neural-network-zoo/



Convolution

- Basically a fancy way of saying "multiplication"
- Originally devised to make non-differentiable signals differentiable
- KDE is related to convolution
- For an input function f and convolutional filter g:

 $f \circledast g$

scipy.signal.convolve

scipy.signal.convolve(in1, in2, mode='full', method='auto')

Convolve two N-dimensional arrays.

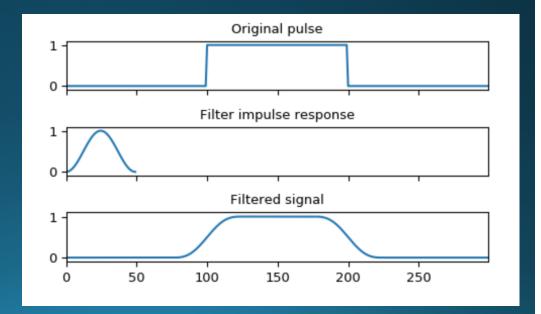
Convolve in1 and in2, with the output size determined by the mode argument.

Parameters: in1 : array_like
First input.

in2 : array_like

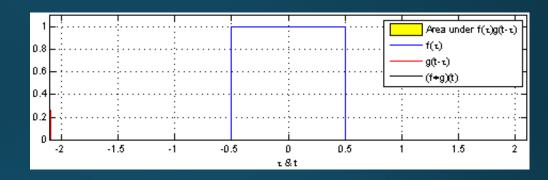
Second input. Should have the same number of dimensions as in1.

mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output:

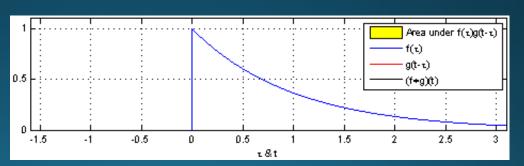


Convolution

- Can be viewed as an integral transform
 - One of the signals is shifted



$$(f \circledast g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$$
$$= \int_{-\infty}^{\infty} f(t-\tau)g(\tau)d\tau$$



- 2D convolutions are critical in computer vision
- Basic idea is still the same
 - Choose a kernel
 - Run kernel over image
 - Build a representation of the convolved image (likely an intermediate representation)
- Lots of applications

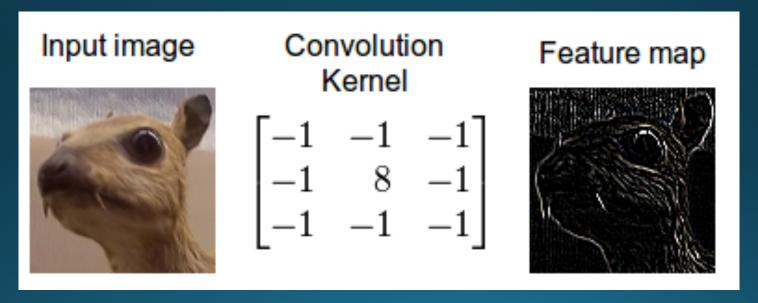
1 _{×1}	1,0	1 _{×1}	0	0
O _{×0}	1 _{×1}	1,0	1	0
0 _{×1}	O _{×0}	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

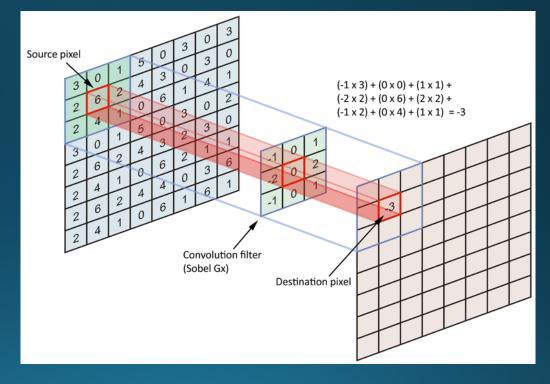
Convolved Feature

• Specific kernels can highlight different image features

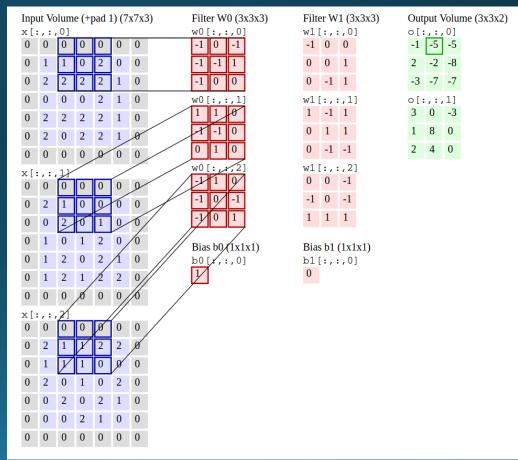


• This kernel is an **edge detector** (others can be smoothers, sharpeners, etc)

- Works basically the same as 1D
- Filter / kernel computes a dot product with underlying pixels
- Generates an output
- Shift kernel and repeat

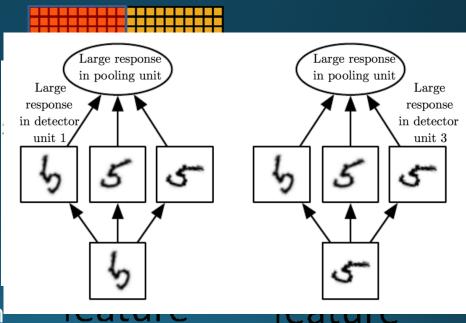


- **Stride** dictates how far the kernel moves after each convolution
- Padding is used to help with edge cases
- Pictured: stride of 2, padding of 1



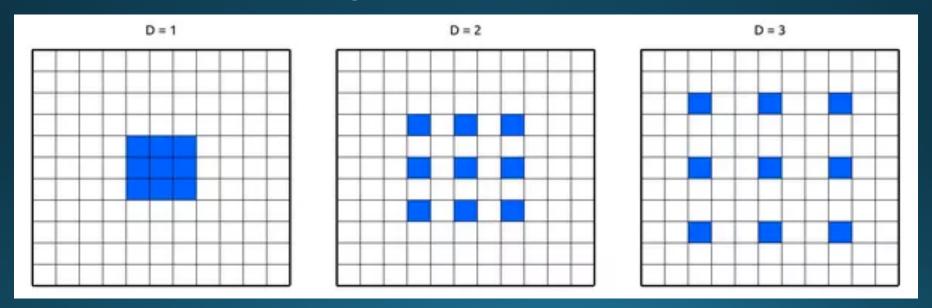
Pooling

- Repeated convolutions can generate large intermediate feature maps
- "Pooling" is used to reduce dimensionality of feature maps while maintaining most informative features
- Mean-pooling, max-pooling
- Functions as a regularizer (or an infinitely-strong prior)



Filters

Different filter topologies

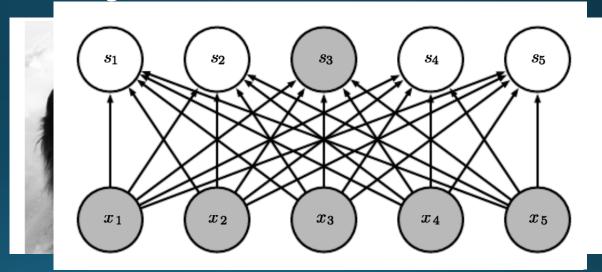


- Captures long-range pixel dependencies
- Very computationally expensive to implement

Convolution

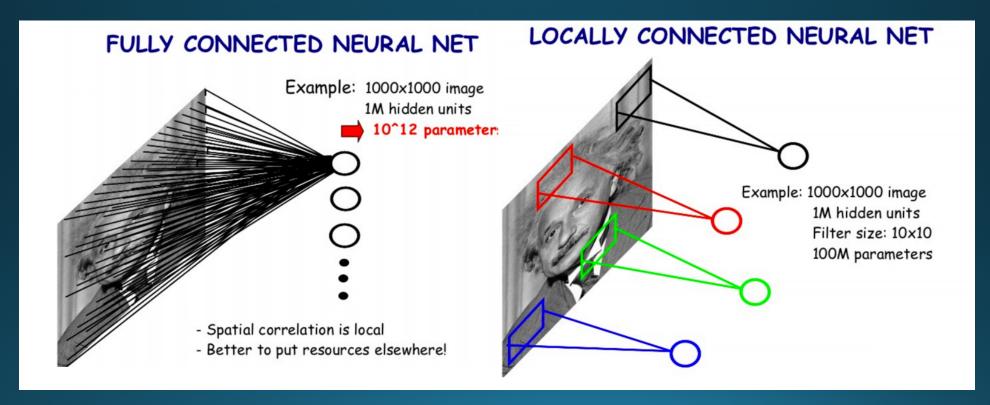
• Key point: parameter sharing

- Images are sparse
 - Pixel dependencies don't span arbitrarily large distances
 - Important effects are local

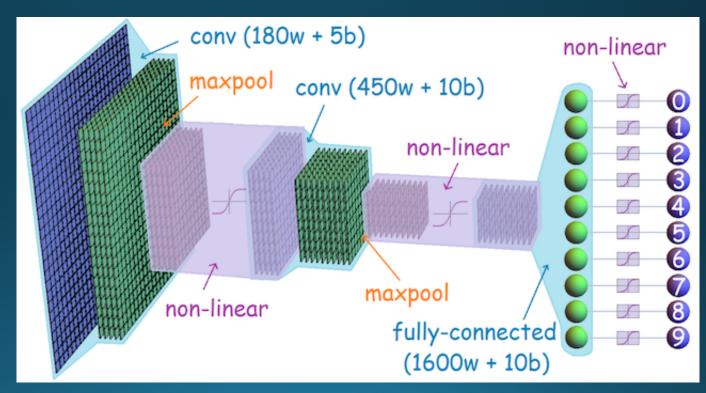


- Instead of a fully-connected network...
- ...we have one that is more sparsely-connected

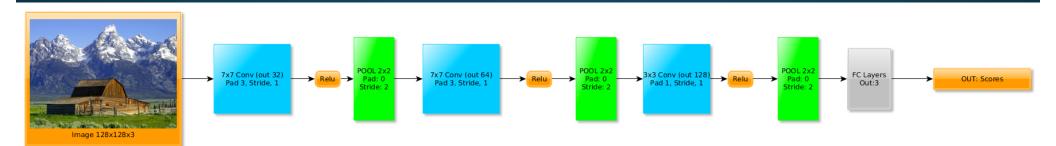
Parameter Sharing



- Stacked
 - Convolutions
 - Pools
 - Activations
- Fullyconnected classification layer

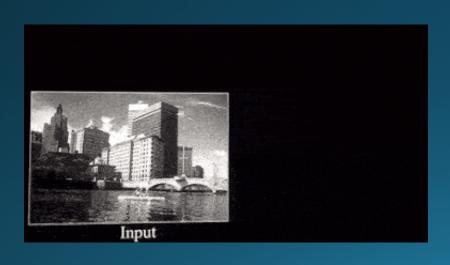


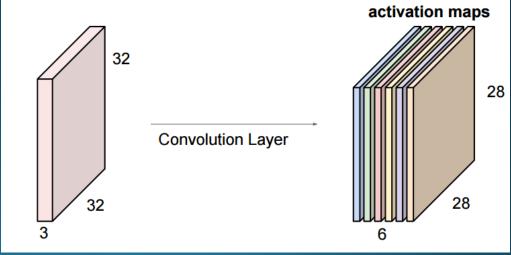
• Pattern can be repeated several times



• Still "deep", but convolutions are the most important part

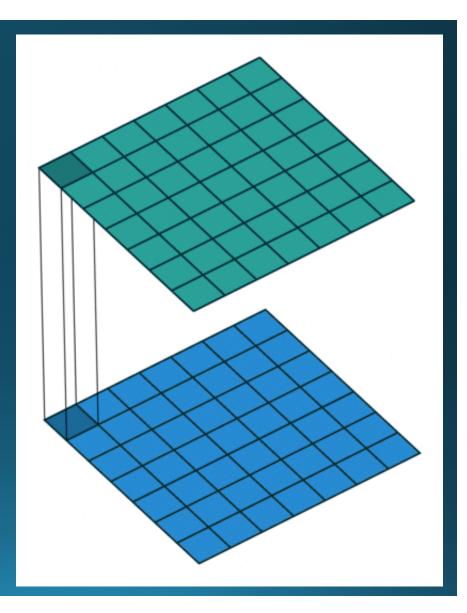
- Filters are the things that "search" for something in particular in an image
- To search for many different things, have many different filters





- Hyperparameters relevant to CNNs:
- Kernel size
 - Usually small
- Stride
 - Usually 1 (larger for pooling layers)
- Zero padding depth
 - Enough to permit convolutional output size to be the same as input size
- Number of convolutional filters
 - Number of "patterns" for the network to search for

- 1x1 convolutions are a special case
- Convolve the feature maps, rather than the pixel maps
- Function as a dimensionality reduction step (like pooling)
 - Can also be used in pooling



CNN Applications: Object Localization

- Two discrete steps:
 - Localizing a bounding box (regression)
 - Identifying the object (*classification*)
- Generate "region proposals"
- Classification accuracy

Classification head"

The best result now is Faster RCNN with a resnet 101 layer.

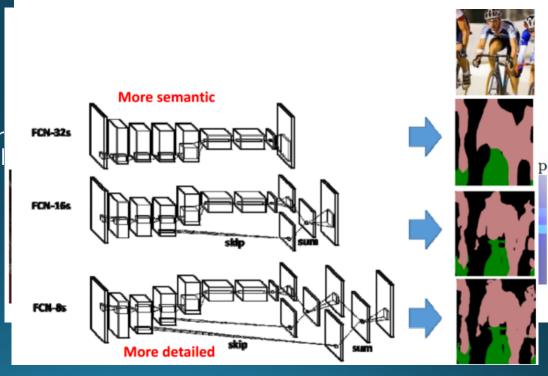
	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

CNN Applications: Single-shot Detection

- Combines region-proposal (regression) and object detection (classification) into a single step
- Use deep-level feature maps to predict class scores and bounding boxes
- Families of Single-shot detectors:
 - YOLO (single activation map for both class and region)
 - SSD (different activations)
 - R-FCN (like Faster R-CNN)

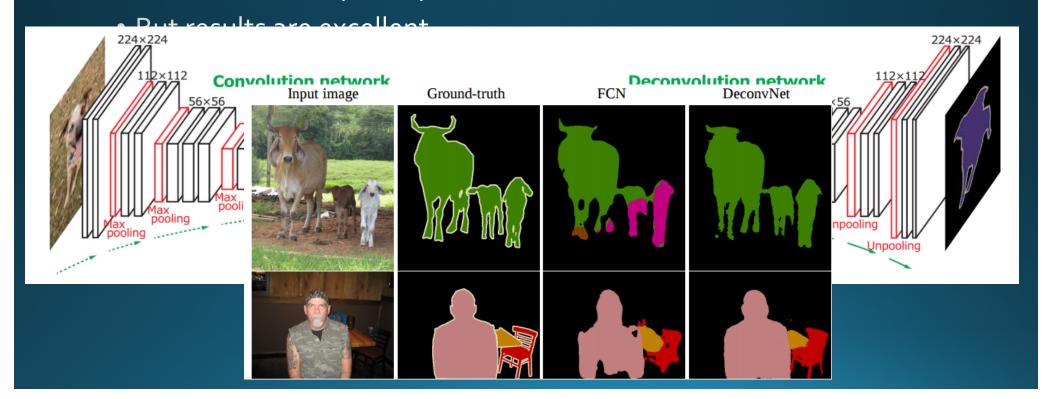
CNN Applications: Object Segmentation

- Create a map of the detected object areas
- "Fully-convolutional" networks
 - Substitute fully-connected layer at end for another convolutional layer
 - Activations show object
- Resolution is lost in upsampling step
 - Skip-connections to bring in some of the "lost" resolution
- EXTREME Segmentation
 - Replace upsampling with a complete deconvolution stack



CNN Applications: Object Segmentation

• "DeconvNet": Super-expensive to train



Conclusions

- CNNs are mostly "convolutions inside a deep network"
 - Main operator (i.e. most important) is the convolution
 - Exploits image sparsity: important features are local
- A couple new[ish] tricks include
 - Automatically learning the filters as part of the training process
 - Using pooling
 - 1x1 convolutions
- Applications include
 - Object detection (is there an object)
 - Object localization and segmentation (where is the object)
 - Object classification (what is the object)
 - Zero- and single-shot detectors

Course Details

- Projects!
 - 3 presentations per day
 - 9 teams—20 minutes hard speaking time limit
 - Presentations are the week after Thanksgiving break
- Workshop 10: Introduction to deep learning with TensorFlow
 - Jonathan Waring & Xiaojia He

Tues, 11/28	Final Project Presentations
Wed, 11/29	Final Project Presentations
Thurs, 11/30	Final Project Presentations
Thurs, 12/7	Final Project Deliverables Due

References

- The Neural Network Zoo
 - http://www.asimovinstitute.org/neural-network-zoo/
- Deep Learning Book, Chapter 9: "Convolutional Networks"
 - http://www.deeplearningbook.org/contents/convnets.html
- Convolution Arithmetic code (for generating awesome gifs)
 - https://github.com/vdumoulin/conv_arithmetic
- 1x1 Convolutions
 - https://iamaaditya.github.io/2016/03/one-by-one-convolution/
- Al Gitbook
 - https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/