
Khaled Rasheed
Computer Science Dept.

University of Georgia
http://www.cs.uga.edu/~khaled



} Genetic algorithms
◦ Parallel genetic algorithms

} Genetic programming
} Evolution strategies
} Classifier systems
} Evolution programming
} Related topics
} Conclusion



} Fitness = Height
} Survival of the fittest





} Maintain a population of potential 
solutions

} New solutions are generated by 
selecting, combining and modifying 
existing solutions
◦ Crossover
◦ Mutation

} Objective function = Fitness function
◦ Better solutions favored for parenthood
◦ Worse solutions favored for replacement



} maximize 2X^2-y+5 where X:[0,3],Y:[0,3]



} maximize 2X^2-y+5 where X:[0,3],Y:[0,3]



} Representation
} Fitness function
} Initialization 

strategy
} Selection strategy
} Crossover 

operators
} Mutation 

operators



} Representation
} Fitness function
} Initialization 

strategy
} Selection strategy
} Crossover operators
} Mutation operators
} Replacement 

strategy



} Proportional selection (roulette wheel)
◦ Selection probability of individual = individual’s 

fitness/sum of fitness
} Rank based selection
◦ Example: decreasing arithmetic/geometric series
◦ Better when fitness range is very large or small

} Tournament selection
◦ Virtual tournament between randomly selected 

individuals using fitness



} Point crossover (classical)
◦ Parent1=x1,x2,x3,x4,x5,x6
◦ Parent2=y1,y2,y3,y4,y5,y6
◦ Child =x1,x2,x3,x4,y5,y6

} Uniform crossover
◦ Parent1=x1,x2,x3,x4,x5,x6
◦ Parent2=y1,y2,y3,y4,y5,y6
◦ Child =x1,x2,y3,x4,y5,y6

} Arithmetic crossover
◦ Parent1=x1,x2,x3
◦ Parent2=y1,y2,y3
◦ Child =(x1+y1)/2,(x2+y2)/2,(x3+y3)/2



} change one or more components
} Let Child=x1,x2,P,x3,x4...
} Gaussian mutation:
◦ P ¬ P ± ∆p
◦ ∆ p: (small) random normal value

} Uniform mutation:
◦ P ¬ P new
◦ p new : random uniform value

} boundary mutation:
◦ P ¬ Pmin OR Pmax

} Binary mutation=bit flip



} Finds global optima
} Can handle discrete, continuous and 
mixed variable spaces

} Easy to use (short programs)
} Robust (less sensitive to noise, ill 
conditions)



} Relatively slower than other methods 
(not suitable for easy problems)

} Theory lags behind applications









} Coarse-grained GA at high level
} Fine-grained GA at low level



} Coarse-grained GA at high level
} Global parallel GA at low level



} Coarse-grained GA at high level
} Coarse-grained GA at low level



} Introduced (officially) by John Koza in his 
book (genetic programming, 1992)

} Early attempts date back to the 50s 
(evolving populations of binary object 
codes)

} Idea is to evolve computer programs
} Declarative programming languages 

usually used (Lisp)
} Programs are represented as trees



} A population of trees representing 
programs

} The programs are composed of elements 
from the FUNCTION SET and the TERMINAL 
SET

} These sets are usually fixed sets of symbols
} The function set forms "non-leaf" nodes. 

(e.g. +,-,*,sin,cos)
} The terminal set forms leaf nodes. (e.g. 

x,3.7, random())





} Fitness is usually based on I/O traces
} Crossover is implemented by randomly 

swapping subtrees between individuals
} GP usually does not extensively rely on 

mutation (random nodes or subtrees)
} GPs are usually generational (sometimes 

with a generation gap)
} GP usually uses huge populations (1M 

individuals)





} More flexible representation
} Greater application spectrum
} If tractable, evolving a way to make 
“things” is more useful than evolving 
the “things”.

} Example: evolving a learning rule for 
neural networks (Amr Radi, GP98) vs. 
evolving the weights of a particular NN.



} Extremely slow
} Very poor handling of numbers
} Very large populations needed



} Genetic programming with linear genomes 
(Wolfgang Banzaf)
◦ Kind of going back to the evolution of binary 

program codes
} Hybrids of GP and other methods that 

better handle numbers:
◦ Least squares methods
◦ Gradient based optimizers
◦ Genetic algorithms, other evolutionary 

computation methods
} Evolving things other than programs
◦ Example: electric circuits represented as trees 

(Koza, AI in design 1996)



} Were invented to solve numerical optimization 
problems

} Originated in Europe in the 1960s
} Initially: two-member or (1+1) ES:
◦ one PARENT generates one OFFSPRING per 

GENERATION
◦ by applying normally distributed (Gaussian) mutations
◦ until offspring is better and replaces parent
◦ This simple structure allowed theoretical results to be 

obtained (speed of convergence, mutation size)
} Later: enhanced to a (µ+1) strategy which 

incorporated crossover





} Schwefel introduced the multi-
membered ESs now denoted by (µ +λ) 
and (µ, λ)

} (µ, λ) ES: The parent generation is 
disjoint from the child generation

} (µ + λ) ES: Some of the parents may be 
selected to "propagate" to the child 
generation



} Real valued vectors consisting of two 
parts:
◦ Object variable: just like real-valued GA 

individual
◦ Strategy variable: a set of standard 

deviations for the Gaussian mutation
} This structure allows for "Self-
adaptation“ of the mutation size
◦ Excellent feature for dynamically changing 

fitness landscape



} In machine learning we seek a good 
hypothesis

} The hypothesis may be a rule, a neural 
network, a program ... etc.

} GAs and other EC methods can evolve 
rules, NNs, programs ...etc.

} Classifier systems (CFS) are the most 
explicit GA based machine learning 
tool.



} Rule and message system
◦ if <condition> then <action>

} Apportionment of credit system
◦ Based on a set of training examples
◦ Credit (fitness) given to rules that match the 

example
◦ Example: Bucket brigade (auctions for 

examples, winner takes all, existence taxes)
} Genetic algorithm
◦ evolves a population of rules or a population 

of entire rule systems



} Evolves a population of rules, the final 
population is used as the rule and message 
system

} Diversity maintenance among rules is hard
} If done well converges faster
} Need to specify how to use the rules to 

classify
◦ what if multiple rules match example?
◦ exact matching only or inexact matching allowed?



} Each individual is a complete set of 
rules or complete solution

} Avoids the hard credit assignment 
problem

} Slow because of complexity of space



} Classical EP evolves finite state 
machines (or similar structures)

} Relies on mutation (no crossover)
} Fitness based on training sequence(s)
} Good for sequence problems (DNA) 
and prediction in time series





} Add a state (with random transitions)
} Delete a state (reassign state 
transitions)

} Change an output symbol
} Change a state transition
} Change the start state



} No specific representation
} Similar to Evolution Strategies 
◦ Most work in continuous optimization
◦ Self adaptation common

} No crossover ever used!



} Variable complexity linear representations
} Representations based on description of 

transformations
◦ instead of enumerating the parameters of the individual, 

describe how to change another (nominal) individual to 
be it.
◦ Good for dimension reduction, at the expense of 

optimality
} Surrogate assisted evolution methods
◦ Good when objective function is very expensive
◦ fit an approximation to the objective function and uses it 

to speed up the evolution
} Differential Evolution



} Artificial life
◦ An individual’s fitness depends on genes 

+ lifetime experience
◦ An individual can pass the experience to 

offspring
} Co-evolution
◦ Several populations of different types of 

individuals co-evolve
◦ Interaction between populations changes 

fitness measures



} Ant Colony Optimization
} Inspired by the social behavior of ants
}Useful in problems that need to find paths 

to goals
} Particle Swarm optimization
} Inspired by social behavior of bird flocking or fish 

schooling
} The potential solutions, called particles, fly 

through the problem space by following the 
current optimum particles



} All evolutionary computation models 
are getting closer to each other

} The choice of method is important for 
success

} EC provides a very flexible 
architecture
◦ easy to combine with other paradigms
◦ easy to inject domain knowledge



} Evolutionary Computation
} IEEE transactions on evolutionary 
computation

} Genetic programming and evolvable 
machines

} other: AIEDAM, AIENG ...



} Genetic and evolutionary computation 
conference (GECCO)

} Congress on evolutionary computation 
(CEC)

} Parallel problem solving from nature 
(PPSN)

} other: AI in design, IJCAI, AAAI ...


