Evolutionary Computation

Khaled Rasheed Computer Science Dept. University of Georgia http://www.cs.uga.edu/~khaled

Presentation outline

- Genetic algorithms
 - Parallel genetic algorithms
- Genetic programming
- Evolution strategies
- Classifier systems
- Evolution programming
- Related topics
- Conclusion

In the forest

- Fitness = Height
- Survival of the fittest

Reproduction

Genome: ATTGCGCCATGAT

ATTAAACCATAGT

Crossover:

ATTG CGCCATGAT ATTA AACCATAGT ATTG AACCATAGT

Mutation:

аттдааCсатадт аттдааGсатадт

Genetic Algorithms

- Maintain a population of potential solutions
- New solutions are generated by selecting, combining and modifying existing solutions
 - Crossover
 - Mutation

Objective function = Fitness function

- Better solutions favored for parenthood
- Worse solutions favored for replacement

Example: numerical optimization

maximize 2X^2-y+5 where X:[0,3],Y:[0,3]

Example with binary representation

maximize 2X^2-y+5 where X:[0,3],Y:[0,3]

Elements of a generational genetic algorithm

- Representation
- Fitness function
- Initialization strategy
- Selection strategy
- Crossover operators
- Mutation
 - operators

Elements of a steady state genetic algorithm

- Representation
- Fitness function
- Initialization strategy
- Selection strategy
- Crossover operators
- Mutation operators
- Replacement
 - strategy

Selection strategies

Proportional selection (roulette wheel)

 Selection probability of individual = individual's fitness/sum of fitness

Rank based selection

- Example: decreasing arithmetic/geometric series
- Better when fitness range is very large or small

Tournament selection

 Virtual tournament between randomly selected individuals using fitness

Crossover Operators

Point crossover (classical)

- Parent1 = x1, x2, x3, x4, x5, x6
- Parent2=y1,y2,y3,y4,y5,y6
- Child =x1,x2,x3,x4,y5,y6

Uniform crossover

- Parent1=x1,x2,x3,x4,x5,x6
- Parent2=y1,y2,y3,y4,y5,y6
- Child =x1,x2,y3,x4,y5,y6

Arithmetic crossover

- Parent1=x1,x2,x3
- Parent2=y1,y2,y3
- Child =(x1+y1)/2,(x2+y2)/2,(x3+y3)/2

Mutation Operators

- change one or more components
- Let Child=x1,x2,P,x3,x4...
- Gaussian mutation:
 - $P \neg P \pm \Delta p$
 - Δ p: (small) random normal value
- Uniform mutation:
 - *P* ¬ *P* new
 - p new : random uniform value
- boundary mutation:
 - P ¬ Pmin OR Pmax

Binary mutation=bit flip

Advantages of Genetic-Algorithm based optimization

- Finds global optima
- Can handle discrete, continuous and mixed variable spaces
- Easy to use (short programs)
- Robust (less sensitive to noise, ill conditions)

Disadvantages of Genetic-Algorithm based optimization

- Relatively slower than other methods (not suitable for easy problems)
- Theory lags behind applications

Global parallel GA

Coarse-grained parallel GA (Island model)

Fine-grained parallel GA

Hybrid parallel GA

Coarse-grained GA at high level
Fine-grained GA at low level

Hybrid parallel GA

Coarse-grained GA at high level
Global parallel GA at low level

Hybrid parallel GA

Coarse-grained GA at high level
 Coarse-grained GA at low level

Genetic Programming (GP)

- Introduced (officially) by John Koza in his book (genetic programming, 1992)
- Early attempts date back to the 50s (evolving populations of binary object codes)
- Idea is to evolve computer programs
- Declarative programming languages usually used (Lisp)
- Programs are represented as trees

GP individuals

- A population of trees representing programs
- The programs are composed of elements from the FUNCTION SET and the TERMINAL SET
- These sets are usually fixed sets of symbols
- The function set forms "non-leaf" nodes. (e.g. +,-,*,sin,cos)
- The terminal set forms leaf nodes. (e.g. x,3.7, random())

Example: GP individual

GP operation

- Fitness is usually based on I/O traces
- Crossover is implemented by randomly swapping subtrees between individuals
- GP usually does not extensively rely on mutation (random nodes or subtrees)
- GPs are usually generational (sometimes with a generation gap)
- GP usually uses huge populations (1M individuals)

Example: GP crossover

Advantages of GP over GAs

- More flexible representation
- Greater application spectrum
- If tractable, evolving a way to make "things" is more useful than evolving the "things".
- Example: evolving a learning rule for neural networks (Amr Radi, GP98) vs. evolving the weights of a particular NN.

Disadvantages of Genetic Programming

- Extremely slow
- Very poor handling of numbers
- Very large populations needed

Modern Trends

- Genetic programming with linear genomes (Wolfgang Banzaf)
 - Kind of going back to the evolution of binary program codes
- Hybrids of GP and other methods that better handle numbers:
 - Least squares methods

- Gradient based optimizers
- Genetic algorithms, other evolutionary computation methods
- Evolving things other than programs
 - Example: electric circuits represented as trees (Koza, Al in design 1996)

Evolution Strategies (ES)

- Were invented to solve numerical optimization problems
- Originated in Europe in the 1960s
- Initially: two-member or (1+1) ES:

- one PARENT generates one OFFSPRING per GENERATION
- by applying normally distributed (Gaussian) mutations
- until offspring is better and replaces parent
- This simple structure allowed theoretical results to be obtained (speed of convergence, mutation size)
- Later: enhanced to a (µ+1) strategy which incorporated crossover

Normal (Gaussian) mutation

Modern evolution strategies

- Schwefel introduced the multi-membered ESs now denoted by ($\mu + \lambda$) and (μ , λ)
- (μ, λ) ES: The parent generation is disjoint from the child generation
- $(\mu + \lambda)$ ES: Some of the parents may be selected to "propagate" to the child generation

ES individuals

- Real valued vectors consisting of two parts:
 - Object variable: just like real-valued GA individual
 - Strategy variable: a set of standard deviations for the Gaussian mutation
- This structure allows for "Selfadaptation" of the mutation size
 - Excellent feature for dynamically changing fitness landscape

Machine learning and evolutionary computation

- In machine learning we seek a good hypothesis
- The hypothesis may be a rule, a neural network, a program ... etc.
- GAs and other EC methods can evolve rules, NNs, programs ...etc.
- Classifier systems (CFS) are the most explicit GA based machine learning tool.

Elements of a classifier system

- Rule and message system
 - if <condition> then <action>

Apportionment of credit system

- Based on a set of training examples
- Credit (fitness) given to rules that match the example
- Example: Bucket brigade (auctions for examples, winner takes all, existence taxes)

Genetic algorithm

 evolves a population of rules or a population of entire rule systems

The Michigan approach: population of rules

- Evolves a population of rules, the final population is used as the rule and message system
- Diversity maintenance among rules is hard
- If done well converges faster
- Need to specify how to use the rules to classify
 - what if multiple rules match example?
 - exact matching only or inexact matching allowed?

The Pittsburgh approach

- Each individual is a complete set of rules or complete solution
- Avoids the hard credit assignment problem
- Slow because of complexity of space

Evolution programming (EP)

- Classical EP evolves finite state machines (or similar structures)
- Relies on mutation (no crossover)
- Fitness based on training sequence(s)
- Good for sequence problems (DNA) and prediction in time series

EP individual

EP mutation operators

- Add a state (with random transitions)
- Delete a state (reassign state transitions)
- Change an output symbol
- Change a state transition
- Change the start state

Modern EP

- No specific representation
- Similar to Evolution Strategies
 - Most work in continuous optimization
 - Self adaptation common
- No crossover ever used!

Other evolutionary computation "ways"

- Variable complexity linear representations
- Representations based on description of transformations
 - instead of enumerating the parameters of the individual, describe how to change another (nominal) individual to be it.
 - Good for dimension reduction, at the expense of optimality

Surrogate assisted evolution methods

- Good when objective function is very expensive
- fit an approximation to the objective function and uses it to speed up the evolution
- Differential Evolution

Related Topics

Artificial life

- An individual's fitness depends on genes
 + lifetime experience
- An individual can pass the experience to offspring

Co-evolution

- Several populations of different types of individuals co-evolve
- Interaction between populations changes fitness measures

Other Nature Inspired Heuristics

Ant Colony Optimization

- Inspired by the social behavior of ants
- Useful in problems that need to find paths to goals

Particle Swarm optimization

- Inspired by social behavior of bird flocking or fish schooling
- The potential solutions, called particles, fly through the problem space by following the current optimum particles

The bigger picture

- All evolutionary computation models are getting closer to each other
- The choice of method is important for success
- EC provides a very flexible architecture
 - easy to combine with other paradigms
 - easy to inject domain knowledge

EC journals

- Evolutionary Computation
- IEEE transactions on evolutionary computation
- Genetic programming and evolvable machines
- other: AIEDAM, AIENG ...

EC conferences

- Genetic and evolutionary computation conference (GECCO)
- Congress on evolutionary computation (CEC)
- Parallel problem solving from nature (PPSN)
- other: Al in design, IJCAI, AAAI ...

