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Spectral Clustering




High Dimensional Data
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The Problem of Clustering

* Given a set of points, with a notion of distance between points,
group the points into some number of , 50 that
* Members of a cluster are close/similar to each other
* Members of different clusters are dissimilar

* Usually
* Points are in a high-dimensional space

* Similarity is defined using a distance measure
* Euclidean, Cosine, Jaccard, edit distance, ...
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Example: Clusters & Outliers
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Clustering is a hard problem!
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Why is it hard?

* Clustering in two dimensions looks easy

* Clustering small amounts of data looks easy

* And in most cases, looks are not deceiving

* Many applications involve not 2, but 10 or 10,000 dimensions

Almost all pairs of points
are at about the same distance

J Leskovec A Rajaraman J U man Mn ngof Mass ve
Datasets, http://www.mmds.org




Curse of dimensionality

* "Vastness” of Euclidean space

__ Volume of the hypersphere
¥ = Volume of the hypercube

10 12 14 16 18 20
Dimension

Curse of Dimensionality. Figure 1. The ratio of the volume of the hypersphere enclosed by the unit hypercube. The
most intuitive example, the unit square and unit circle, are shown as an inset. Note that the volume of the hypersphere
quickly becomes irrelevant for higher dimensionality

http://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_192



Clustering Problem: Galaxies

* A catalog of 2 billion “sky objects” represents objects by their
radiation in 7 dimensions (frequency bands)

Cluster into similar objects, e.g., galaxies, nearby
stars, quasars, etc.

* Sloan Digital Sky Survey




Clustering Problem: Music CDs

Music divides into categories, and customers prefer
a few categories
* But what are categories really?

* Represent a CD by a set of customers who bought it:

* Similar CDs have similar sets of customers, and vice-versa
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Clustering Problem: Music CDs

Space of all CDs:

* Think of a space with one dimension for each customer

* Valuesin a dimension may be o or 1 only
* ACD isapointin this space (x, x,,..., X),
where x; = 1 iff the i " customer bought the CD

* For Amazon, the dimension is tens of millions

* Task: Find clusters of similar CDs
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Clustering Problem: Documents

* Represent a document by a vector
(X, X,,..., X;), Where x; = 1 iff the i " word
(in some order) appears in the document
* |t actually doesn’t matter if k is infinite; i.e., we don't limit the set of words

* Documents with similar sets of words
may be about the same topic
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Cosine, Jaccard, and Euclidean

* As with CDs we have a choice when we think of documents as
sets of words or shingles:
Measure similarity by the cosine distance
Measure similarity by the Jaccard distance
Measure similarity by Euclidean distance
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Overview: Methods of Clustering

* Hierarchical:
(bottom up):
* Initially, each pointis a cluster

* Repeatedly combine the two
“nearest” clusters into one
(top down):
* Start with one cluster and recursively split it

* Point assignment:
* Maintain a set of clusters
* Points belong to “nearest” cluster
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Hierarchical Clustering

Repeatedly combine
two nearest clusters

* Three important questions:

* 1) How do you represent a cluster of more
than one point?

* 2) How do you determine the “nearness” of clusters?
* 3) When to stop combining clusters?
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Hierarchical Clustering

Repeatedly combine two nearest clusters

* (1) How to represent a cluster of many points?

As you merge clusters, how do you represent the “location”
of each cluster, to tell which pair of clusters is closest?

each cluster has a
= average of its (data)points

* (2) How to determine “nearness” of clusters?
* Measure cluster distances by distances of centroids

J Leskovec A Rajaraman J U man Mn ngof Mass ve
Datasets, http://www.mmds.org




Example: Hierarchical clustering

Data:
o ... data point
X ... centroid B
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And in the Non-Euclidean Case?

What about the Non-Euclidean case?

* The only “locations” we can talk about are the points themselves
* i.e., there is no “average” of two points

* (1) How to represent a cluster of many points?
= (data)point “closest” to other points

* (2) How do you determine the “nearness” of clusters? Treat clustroid as
if it were centroid, when computing inter-cluster distances
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“"Closest” Point?

* (1) How to represent a cluster of many points?
= point “closest” to other points

* Smallest maximum distance to other points
* Smallest average distance to other points

* Smallest sum of squares of distances to other points
* Fordistance metric d clustroid c of cluster Ciis:

Datapoint Centroid
A Centroid is the avg. of all (data)points

in the cluster. This means centroid is
i an “artificial” point.
Clustroid Clustroid is an existing (data)point
Cluster on that is “closest” to all other points in
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Defining “"Nearness” of Clusters

* (2) How do you determine the “nearness” of clusters?

Intercluster distance = minimum of the distances between any two
points, one from each cluster

Pick a notion of " " of clusters, e.g., maximum distance from the
clustroid

* Merge clusters whose is most cohesive
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Cohesion

Use the of the merged cluster = maximum
distance between points in the cluster

Use the between points in the
cluster

Use a

 Take the diameter or avg. distance, e.g., and divide by the number of
points in the cluster
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Implementation

* At each step, compute pairwise distances
between all pairs of clusters, then merge

e O(N3)

* Careful implementation using priority queue can reduce time to
O(N?log N)
* Still too expensive for really big datasets
that do not fit in memory
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k—means Algorithm(s)

* Assumes Euclidean space/distance
* Start by picking k, the number of clusters

* Initialize clusters by picking one point per cluster

Pick one point at random, then k-1 other points, each as far
away as possible from the previous points
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Populating Clusters

* 1) For each point, place it in the cluster whose current centroid it is
nearest

* 2) After all points are assigned, update the locations of centroids of
the k clusters

* 3) Reassign all points to their closest centroid
* Sometimes moves points between clusters

* Convergence: Points don't move between clusters and centroids stabilize
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Getting the k right

How to select k?

* Try different k, looking at the change in the average distance to
centroid as k increases

* Average falls rapidly until right k, then changes little

|

Average
distance to
centroid
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Example: Picking k
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Example: Picking k
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Example: Picking k
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More K-means examples

* http://www.naftaliharris.com/blog/visualizing-k-means-clustering/



http://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Graph Partitioning

* Undirected graph

* Bi-partitioning task:
* Divide vertices into two disjoint groups
A

* How can we define a “good” partition of ?
* How can we efficiently identify such a partition?
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Graph Partitioning

* Maximize the number of within-group
connections

* Minimize the number of between-group connections

B
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Graph Cuts

 Express partitioning objectives as a function of the “edge cut” of
the partition

Set of edges with only one vertexin a group:

B

- cut(A,B) =2
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Graph Cut Criterion

* Criterion: Minimum-cut
* Minimize weight of connections between groups

arg min, g cut(A,B)

* Degenerate case:
“Optimal cut”
I

* Only considers external cluster connections
* Does not consider internal cluster connectivity
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Graph Cut Criteria

* Criterion: Normalized-cut [Shi-Malik, ‘97]
« Connectivity between groups relative to the density of each group
ncut(A, B) = cut(A, B) N cut(A,B)
vol(A) vol(B)

: total weight of the edges with at least
one endpointin:

m Why use this criterion?
m Produces more balanced partitions

* Problem: Computing optimal cut is NP-hard
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Spectral Graph Partitioning

* A: adjacency matrix of undirected G
* A;=1  if isanedge, elseo
* X is a vector in R* with components
* Think of it as a label/value of each node of

* What is the meaning of A4- x?

J Leskovec A Rajaraman J U man Mn ngof Mass ve
Datasets, http://www.mmds.org




What is the meaning of Ax?

* j* coordinate of A- x :
* Sum of the x-values of neighbors of j
* Make this a new value at nodej

* Analyze the “spectrum” of matrix representing

Eigenvectors of a graph, ordered
by the magnitude (strength) of their
corresponding eigenvalues :
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Matrix Representations

* Adjacency matrix (A4):
* nxn matrix
* A=[a;, a;=1 if edge between node i and j

)

* Symmetric matrix
* Eigenvectors are real and orthogonal
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Matrix Representations

* nxn diagonal matrix
* D=[d;], d;;= degree of node i
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Matrix Representations

* nxnsymmetric matrix

)

* What is trivial eigenpair?

* Eigenvalues are non-negative real numbers
* Eigenvectors are real and orthogonal
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Spectral Clustering

* Graph = Matrix
* W*v, = v, “propogates weights from neighbors”
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Spectral Clustering

* If Wis connected but roughly block
diagonal with k blocks, then

* the top eigenvector is a constant
vector

* the next k eigenvectors are roughly
piecewise constant with “pieces”
corresponding to blocks

seg.l1 seg.2 seg.3




Spectral Clustering

* Outline of the algorithm:

Find the top k+1 eigenvectorsv,,...,V,,

. Discard the “top” one (the “trivial pair”)
Replace every node a with k-dimensional vector x, = <v,(a),...,V},,

(a)

. Cluster with k-means




Example: Spectral Partitioning
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Example: Spectral Partitioning

Rank in x,
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k-Way Spectral Clustering

* Recursive bi-partitioning
* Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
* Disadvantages: Inefficient, unstable
* Cluster multiple eigenvectors
* Build areduced space from multiple eigenvectors
* Commonly used in recent papers
* A preferable approach...
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Why use multiple eigenvectors?

* Approximates the optimal cut
* Can be used to approximate optimal k-way normalized cut

* Emphasizes cohesive clusters
* Increases the unevenness in the distribution of the data

* Associations between similar points are amplified, associations between
dissimilar points are attenuated

* The data begins to “"approximate a clustering”

* Well-separated space

* Transforms data to a new “embedded space”,
consisting of k orthogonal basis vectors

* Multiple eigenvectors prevent instability due to information loss
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More terms

* If Alis an adjacency matrix (maybe weighted) and D is a (diagonal)
matrix giving the degree of each node

* ThenL,=D - Aisthe (unnormalized) Laplacian
* W=AD"is a probabilistic adjacency matrix
* L, =1-D*AD*2is the (normalized or random-walk) Laplacian

* The largest eigenvectors of W correspond to the smallest
eigenvectors of L,

* So sometimes people talk about “bottom eigenvectors of the Laplacian”
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Figure 1: Toy example for spectral clustering where the data points have been drawn from a mixture of
four Gaussians on R. Left upper corner: histogram of the data. First and second row: eigenvalues and
eigenvectors of L, and L based on the k-nearest neighbor graph. Third and fourth row: eigenvalues
and eigenvectors of L., and L based on the fully connected graph. For all plots, we used the Gaussian
kernel with ¢ = 1 as similarity function. See text for more details.




Spectrum from Data
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Figure 4: Three data sets, and the smallest 10 eigenvalues of L. See text for more details.




Similarity Graphs for Spectral Clustering
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Spectral Clustering: Pros and Cons

* Elegant, and well-founded mathematically

* Works quite well when relations are approximately transitive (like
similarity)

* Does not assume any form of the data (compare to K-means)

* Very noisy datasets cause problems

* “Informative” eigenvectors need not be in top few
* Performance can drop suddenly from good to terrible

* Expensive for very large datasets
* Computing eigenvectors is the bottleneck




Use cases and runtimes

* K-Means
R0
* "Embarrassingly parallel”
* Not very useful on anisotropic
data
* Spectral clustering

 Excellent quality under many
different data forms

* Much slower than K-Means

M|n|BatchKMeans

SpectraICIustermg
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hamburg.de/ML/contents/people/luxburg/publications/Luxburgoz
tutorial.pdf
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