Application of evolutionary computation to the advanced image processing

Farid Ghareh Mohammadi
Ph.D Student in Computer Science Department at
University of Georgia

Outlines:

Problem statement Curse of Dimensionality Steganography VS Steganalysis Preliminaries of Evolutionary algorithms Stegnalaysis Examples IFAB and RISAB Summary

Emerging problems:

High-Dimensional Data

- Multimedia
 - High-resolution images; High-resolution videos
 - Data from multiple sensors
- **Bioinformatics**
 - Expressions of genes
 - Neurons
- Social networks
 - Tweets/likes/friendships
 - Other interactions
- Weather and climate
 - Multiple measurements (e.g., temperature)
 - Time series data
- Finance
 - Stock markets
 - Time series data

Steganalysis Started getting important ...

September 11 2001

Work to be discussed

IFAB

Image steganalysis using a bee colony based feature selection algorithm FG Mohammadi, MS Abadeh - Engineering Applications of Artificial ..., 2014 - Elsevier Feature selection is one of the most significant phases of pre-analysis processing, which can influence the performance of steganalysis. In this paper, we have proposed a new featurebased blind steganalysis method for detecting stego images from the cover images in JPEG images using a feature selection technique based on artificial bee colony (IFAB). Most usual techniques for feature selection are wrapper methods and filter methods which IFAB is one of the wrapper based feature selection methods. Artificial bee colony (ABC) algorithm is ...

☆ 99 Cited by 72 Related articles All 3 versions Web of Science: 42

RISAB

Region based image steganalysis using artificial bee colony

FG Mohammadi, H Sajedi - Journal of Visual Communication and Image ..., 2017 - Elsevier

Steganalysis is the art and skill of discriminating stego images from cover images. Image
steganalysis algorithms can be divided into two broad categories, specific and universal. In
this paper, a novel universal image steganalysis algorithm is proposed which is called
RISAB, Region based Image Steganalysis using Artificial Bee colony. The goal of the
proposed method is to realize a sub-image from stego and cover images through ABC with
respect to density according to the cover, stego and difference images. In our method, we ...

☆ 99 Cited by 12 Related articles All 2 versions Web of Science: 5

View It @ UGA

View It @ UGA

Introduction to Image Proceesing

Very Quick Shot

Image Processing Steganography VS Steganalysis

Steganography

Original Image

Watermarked Image

ıy

Security level

Stego VS Cover

Image Processing Steganography VS Steganalysis

Triple Channel Image

- RGB
- HSV

One Channel Image

- Binary
- Gray

(0-255)

Genera Stegan

My friend Bob,

until yesterday I was using binoculars for stargazing. Today, I decided to try my new telescope. The galaxies in Leo and Ursa Major were unbelievable! Next, I plan to check out some nebulas and then prepare to take a few snapshots of the new comet. Although I am satisfied with the telescope, I think I need to purchase light pollution filters to block the xenon lights from a nearby highway to improve the quality of my pictures.

Cheers, Alice.

Mf Buylwubfs Tldttmnt Tgi La UMwuNlpt cosnat ptt afsome otc Alaswttlt Int plpft btxlfanhtit qomp CA

 $\pi = 3.14159265589793...$

Buubdlupnpsspx

Secret Key

Cover Message

Yes

Message

Attack Tomorrow

Preliminaries of Evolutionary algorithms

Preliminaries of Evolutionary algorithms

Preliminaries of Evolutionary algorithms

Reproduction

Crossover:

ATTG CGCCATGAT
ATTA AACCATAGT

ATTG AACCATAGT

Mutation:

ATTGAA CCATAGT
ATTGAA GCATAGT

Derived from evolutionary computation slides (Prof Rasheed)

Why Evolutionary algorithms?

AKA: Curse of Dimensionality (CoD): too much information!

	Dimension	(
SRMQ1	12,753	SRMQ1.m	Spatial	[10]
SPAM	686	spam686.m	Spatial	[6]
CC-PEV	548	ccpev548.m	JPEG	[5,3]
J+SRM	35,263	see Notes	Both	[2]
PSRM3	12870	PSRM.m		
(PSRM8)	-34320	PSRM.zip	Spatial	[11]
		PSRM.tar		
		PSRM.m		
PSRM	12870	PSRM.zip	Spatial	[12]
		PSRM.tar		
CSR	1183	<u>CSR.m</u>	Spatial	[13]
		DCTR.m		
DCTR	8000	DCTR.zip	JPEG	[14]
		DCTR.tar		
maxSRM	34,671 (12,753)	maxSRMq2d2.zip	Spatial	[15]
SCRMQ1, CRMQ1	12753 + 5404	SCRMQ1.m	Spatial, color	[16]
		PHARM.m		
PHARM	12600	PHARM.zip	JPEG	[17]
		PHARM.tar		
	5514,		Spatial,	
CFA-aware CRM	4146,	SRMQ1CFA.m	color	[18]
	10323			
GFR	17000	GFR.m	JPEG	[19]
sigma-features	1980	sigma-spamPSRM.m	spatial	[20]

Feature Extraction Optimization

General procedure of Evolutionary algorithm

General procedure of Evolutionary algorithm

Artificial Bee Colony

Presented by Karaboga in 2005

- > Continues problems
- > Exploring
- > Exploiting

Task: gather nectars using Employed bee #=10

5 best places have been chosen by onlooker

Sending onlooker bees to be at the best places

Exploiting the best point in the environment

Choosing scout bee one at a time to explore

Goal is finding the global maximum

IFAB

IFAB

Ghareh mohammadi et al 2014

IFAB-parameters

Parameter	Value	
Population size	2* Number of feature in data set(SPAM=686	
Food source	Number of feature in data set(SPAM=686)	
Feature Dimension (D)	80	
Lower Bound	1	
Upper Bound	N= Number of feature in data set	
No. of runs	20	
Limit	100	

Parameter	Value
Population size	2*548
Food source	548
Feature Dimension (D)	80
Lower Bound	1
Upper Bound	N=548
No. of runs	20
Limit	100

IFAB

Ghareh Mohammadi et al 2014

Result-SPAM

Result-CCPEV

RISAB

Risab -Parameters

Food source				
RIS = Row image size CIS = Column image size PV = Pixel Value	i	j	i'	j'
	RIS-PV	CIS-PV	RIS	CIS

Parameter	Value
Population size(P)	2*512
Food source	P/2
Feature Dimension (D)	4
Lower Bound	1
Upper Bound	N=548-PV (PV=159)
No. of runs	20
Limit	100

RISAB

• Training

Ghareh Mohammadi et al 2017

RISAB

• Testing

RISAB-example

Fig. 8. A sample of (a) test image, (b) the selected sub-image shown with a red rectangle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Ghareh Mohammadi et al 2017

Result-SPAM

Result-CC-PEV

Summary

Thank you

References:

- http://ice.dlut.edu.cn/LiMing/research.html
- https://doi.org/10.1016/j.jvcir.2016.12.003
- https://www.redcom.com/introduction-to-cryptography/
- https://www.slideshare.net/ankushkr007/digital-watermarking-15450118
- Steganography in Digital Media, Principles, Algorithms, and Applications By Dr Jessica Fridrich
- http://www.ws.binghamton.edu/fridrich/
- https://www.sciencedirect.com/science/article/pii/S0952197613001905#f0010
- https://www.sciencedirect.com/science/article/pii/S1047320316302516#f0070
- https://arxiv.org/pdf/1908.08006.pdf
- https://arxiv.org/pdf/1908.08563.pdf