CSCl 4360/6360 Data Science

Metric Learning
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* What is an embedding?
* Transformation
* Reveals [ preserves

* Mapping

Embedd




Embeddings

* Principal Components Analysis (PCA) Linear
 Sparse & Kernel PCA (Thursday!) SlparEe

* Independent Components Analysis (ICA) lon-Gaussian
* Non-negative Matrix Factorization (NMF) Von-negative
* Locally-linear Embeddings (LLE) Nonlinear

* Dictionary Learning (SOON!) ngzﬂieeir

Million Dollar Question:

How do you know the embedding is right?




Embeddings

* If you're performing
classification, it's pretty
easy to know if your
embedding is “right”

* Error decreases?

* Error increases?

* What about
unsupervised learning?

p

Training Sample

Test Sample




Assumptions

* Choice of embedding -> Assumptions about the data

* What if we knew something about the data?

e “Side information”: we don’t know what classes/clusters the data
belong to, but we do have some notion of similarity




Side Information

* DefineasetS
* for every pair x;and x; that are similar, we put this pairin S

* “Similar” is user-defined; can mean anything

* Likewise have aset D
* for every pair x;and x; that are dissimilar, we put this pairin D
* can consist of every pair not in S, or specific pairs if information is available

* We have this similarity information; what can we do with it?




Distance Metrics

* Goal: use side-information to learn
a hew distance metric

* Encode our side-information in a
“"metric” A

* Generalization of Euclidean
distance

* Note when A =/, this is reqular
Euclidean distance

* When A is diagonal, thisis a
“weighted” Euclidean distance

* When data are put through nonlinear
basis functions ¢, nonlinear metrics




Distance Metrics

* Quick Review: What constitutes a valid distance metric?

: Non-negativity
. Symmetry
: Trlanglelnequallty
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“Pseudometric”




Form of a Metric

* Learning metric A (G in
figure) also equivalent to
replacing each point x with
A%2x and using standard
Euclidean distance

* It's an embedding!

* Learning a space inhabited diagonal G

by your data

* Bonus: easy to incorporate :
new data! (unlike LLE or / E
others) \




Learning a Metric (1)

* Goal: Define a metric A that respects
constraint sets S and D

* Simple enough: constrain all pairsin  1in E Hf i ?j‘ ‘?4
S to have small distances A

* |s that all? Z,j€S5

* Nope —trivially solved with A=0




Learning a Metric (2)

 Additional constraint: use pairsin D
to guarantee non-zero distances

* (choice of 1 is arbitrary; any other
constant ¢ would have the effect of
replacing A with c?A)

e |[sthat all?

* Nope — need to ensure A is positive
semi-definite (why?)




Aside!

* We used squared Euclidean distance in the first constraint
. — -2
min Y 1|7 - 413
xZ,yes
* But not in the second! Why?

D llZ—glax1

Z,yeD
* Squared distance in 2" constraint would always result in rank-1 A,
i.e. the data would always be projected on a line

* (proof left as an exercise!)




Learning a Metric (3)

* A third constraint: keep A
positive semi-definite
* (this means the diagonal is
always = o)

A=0

* If Ais PSD, its eigenvectors . T
and eigenvalues exist and are A=XAX

real
 Set any negative eigenvalues

to 0 A" = diag(max{0, \1 },...,{0, A\, })
* Compute A’ i XA,XT




Learning a Metric

* \We have our constraints!

* How do we learn A?

* (Hint) Linear In
parameters of A

* (HINT) First two
constraints are verifiably
convex




Convex Optimization

* For diagonal A, this is "easy”

[l — ;][4 —log ( >z —a:jllA)

(zi,x;)€ED

* (a fancy reformulation of the original constraints)

* Minimizing g is equivalent to solving original problem, up to
multiplication of A by a positive constant

* Gradient descent! (step-size intrinsically enforces PSD of A)




Convex Optimization

* Less “easy” for full A

_ Iterate
* Gradient ascent +
Iterate

iterative projections A :=argming {||A' — A||r : A" € Cy}
A :=argming {||A' — A||r : A" € Cs}

until A converges

A=A+ a(Vag(A)iv,s

until convergence

* For this to work,
constraints needed to
be reversed




Constraint Reformulation

Previous Current

' r — ]| r— g4 <1
I%HE:Hx:WA > lE— 4 <

T,yes Z,§€S
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Z, gl x,yeD

A=0 A=0 <




Iterate

Iterate
A:=argming/ {||A" — A||r : A" € C1}
A:=argming/ {||4A" — A||r : A" € Cs}
until A converges
A=A+ a(Vag(A)1v.s

until convergence

Iterate
Iterate

Do llE-gk <t B A0

z,yeSs

until A converges

A=A+ oV D llE il

T,yeD
until convergence




p-chem properties 78
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p-chem properties




2—class data (original) 3-class data (original)

Experiments

* Generated artificial 3D
data
* 2class
* 3 class
* Separated by y-axis
* Separated by z-axis

Original 2—class data




Experiments

2—class data (original) 2—-class data projection (Newton)
2-class data projection (IP)
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Experiments

3-class data (original) 3-class data projection (Newton) 3-class data projection (IP)




Experiments

Original 2—class data Porjected 2-class data




Experiments

Original data Projected data




Other Applications

* Video scene
segmentation

* Identifying
dynamic
textures in
videos




Other Formulations

* Deep metric learning

 Differentiates different metric
constraints
e Contrastive
* Triplet

_ (a) Triplet: before. (b) Triplet: after.
e Lifted structure

Lifted struct loss




Other Formulations

* Adaptive densities

* Introduces "magnet loss”
(how does it work?)

* Optimizes over entire
neighborhoods simultaneously

* Reduces distribution overlap,
rather than just pairs or triplets

* Requires ground-truth labels

o sl N
100k 200k 200k 400k
Dogs ImageNet Attributes




min, > [L(z—y)?

2 (z,y)ES
Other Formulations [y G

* Large-scale metric learning minz Z)ESIIL(w—y)Il2+A( Z)epém,y
T,y z,y

* If feature space is extremely large, [EEZEEEVACEEREN[E Ty AN MY R RN R
iterative eigen-decompositions are B
a deal-breaker min, Y [|Lz-y)lP+x ¥ max(0,1- |L(z—y)|?)
* Nested convex optimization is a (2.)€5
deal-breaker

* Represent metricA =L"L
* Learn L directly, instead of A

* Use hinge loss to induce
unconstrained optimization

* Parameter server for SGD-based
metric updates




Questions?




Updates
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