CSCl 4360/6360 Data Science

Kernel & Sparse PCA
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* What is an embedding?
* Transformation
* Reveals [ preserves

* Mapping

Embedd




Embeddings

* "Degrees of freedom” versus “intrinsic dimensionality”

0000000000000020000
Vo

/1
AZ
33
44
S5
66
71
§ 9

w-H OV L WD~
Nl 6Ny = O —
NNQOMR U~
v TN LN~
(g~~~ ;LS NVN—
SV NP~
O~ N\ <cwa~
w{snnLwP

RAI SN CWN

\N7?799794Y7277259999499%94
* Despite 64x64 pixels, only so many ways todraw a g

 Low-dimensional manifold




Principal Component Analysis (PCA)

1. Orthogonal projection of data
2. Lower-dimensional linear space known as the principal subspace

3. Variance of the projected data is maximized

Two definitions of PCA

Maximizing Variance Minimizing Reconstruction Error




Maximizing Variance

* We start with the idea of projection from D-dimensions x to M-
dimensions u
* uisaunitvector, sou'u = 1.

. . N !
« Mean of projected data is u”’x, where x = =YN_. x
proj i —i-Cn

N

® I i 1 g e — [ — — —

Variance of the projected data — Y {u; &, — al T} = i1 S
n=1

* where S is the sample covariance g —
matrix of the data




Maximizing Variance

 We want to maximize projected variance u,’Su, with respect to u,

* Obvious problem: needs to be constrained, or else ||u,|| ->

* Appropriate constraint: u,’u, = 1, enforced with Lagrange multiplier
ty Sty + A (1 — Uy ur)
* Set derivative with respect to u, = 0, and a stationary point appears
S’U,l — )\1’11,1
* Means u, must be an eigenvector of S! Left-multiply by u,’
i St = A
* Variance will be max when these are 1% eigenvalue & eigenvector




Minimizing Error

* We want the reconstruction error using the first M < D principal

components to be minimal
N

We want to

J = iZan _ﬁjnHQ minimize J

nY

n=1

* This can be rewritten purely in terms of eigenvectors v,
D

ST Q= Eigenvectors u;come
3 E U sSu : e
out of equation for ¥

n=M-+1

* Therefore, the distortion measure of
reconstruction using the M eigenvectors
of the largest eigenvalues is the sum
of the remaining D - M eigenvalues




Minimizing Error

Original Data Component Reconstruction Original Data Components Reconstruction
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Principal Component Analysis

Advantages Disadvantages

* Optimal low-rank * Principal components are linear
approximation in terms of combinations (cannot generate
squared reconstruction error nonlinear PCs; struggles to

determine PCs in geodesic

* Completely unsupervised
spaces)

* Endless applications _
* Basis vectors are dense and

sometimes difficult to interpret




Kernel PCA

* Whenever we compute a kernel, we rely on a scalar (dot) product of
the form x'x

 Conventional PCA is an outer product (covariance), X'X

» What if we replaced this with an inner product, XX”
* This "Gram matrix” is what we compute eigenvectors of in PCA anyway

* If anything, Kernel PCA is a generalization of PCA to arbitrary
similarity (kernel) functions!

* First step: express conventional PCA such that data vectors x
appear only in the form of scalar products




Kernel PCA

* Recall that the principal components are defined by eigenvectors
of the covariance matrix
S’IZZ — )\zﬁz iis the
dimensional

* and sample covariance matrix defined by index

1 N
- =]
S =« 2 Tnin .
N is the number
n=1 of data points

* and eigenvectors are normalized such that




Kernel PCA

* In kernel PCA, we consider data that have already undergone a
nonlinear transformation:

zeRP o(Z) € RM

* We now perform PCA on this new M-dimensional feature space




Kernel PCA

* Sample covariance matrix C (now MxM)

1 . —

* Goal: solve the eigenvector/eigenvalue equation without having
to explicitly operate in the M- dlmen5|onal feature space

« Combining the two equations: Z O(Zn)P(Zn) T = Nt

* This reduces to

Uz == Z aanb




Kernel PCA

* Substitute back into eigenvector equation and we get a royal mess

N
= 3" GEOET Y aimdEm) = A I aimo(in)
=l m=1 el

* Remember our goal: work only in terms of k(x,, x,.) = ¢(x,) P(x,,)
. Multiply both sides by ¢(x)

1 N
N Z k(fla Cl_fn)
1




Kernel PCA
N
—Zk %) Z Gimk(En, Tm) = Ai ) _ Gin

. Lookfamlllar? K2Ui . AinUz'

n=1
 Which reduces to
K’l_)’i — )\7;’17,5

* (there’s some normalization magic that has to happen but we're
skipping that for now)




Kernel PCA

 Data in original data space (right panel, left subpanel) projected by
nonlinear transformation into feature space (right subpanel). By
performing PCA on feature space, PCs correspond to nonlinear
projections in original data space.

linear PCA kernel PCA
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Kernel PCA

e Gaussian
kernel applied
to 2D data

* First 8 kernel
PCs

* Contours are
lines along
which the
projection onto
the

corresponding e~ _
PC is constant (courtesy of Bernhard Schélkopf)

k(x,y) = exp (—[x — y|?)




Kernel PCA

Second Largest Eigenvector
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Kernelized PCs
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Kernel PCA

Advantages Disadvantages

* Allows for nonlinear principal * Requires finding eigenvectors
components and eigenvalues of NxN matrix,
instead of DxD (large N is

* Infinitely flexible in terms of _
problematic)

allowed kernel functions
* Cannot project new,
unobserved data onto L-
dimensional manifold of kernel




Sparse PCA

* Anyone remember lasso regularization?

* Regularization, in general, is a penalty to encourage small weights
(remember Assignment 2)

* Lasso (or L,) forces weights to o so they become sparse




Sparse PCA

* We still want to maximize u;/Su;, subject to u,/u;=1

* ...and one more constraint: we want to minimize ||u|,

* Formalize these constraints using Lagrangian multipliers

N D
min || X — WUTH%ﬂE_jlnwiul +72|W¢H1




Sparse PCA

2 Qualitatively Sparse PCA
similar to PCA,
but with lots

more zZeros




Sparse PCA

Advantages Disadvantages

* Simpler and more interpretable < Optimization procedure is non-
components convex (often use some version

* Resulting components are very of alternating least-squares)

similar to “standard” PCA




Summary

* Principal Components Analysis
* Classic dimensionality reduction technique

» Kernel PCA
* Introduces nonlinearities into component vectors
* Permits use of arbitrary similarity functions
 Can capture much richer and more complex interactions in data
* Much more expensive to compute than PCA

* Sparse PCA
* Qualitatively similar results to PCA
« Components are sparse, improving interpretability
* Learning procedure is non-convex, typically requiring ALS




Questions?




Notes

* Delay in returning grades was unacceptable and | apologize
* Will be adding +5 to everyone’s final course grade

* Assignment 5 (the last one!) out tomorrow




Resources

* http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/

* Elements of Statistical Learning, Chapter 14
http://statweb.stanford.edu/~tibs/ElemStatlLearn/printings/ESLII
printio.pdf

* Pattern Recognition and Machine Learning, Chapter 12
* Machine Learning: A Probabilistic Perspective, Chapter 14

* An Introduction to Statistical Learning, Chapter 10 http://www-
bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf



http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf

