CSCI 4360/6360 Data Science II

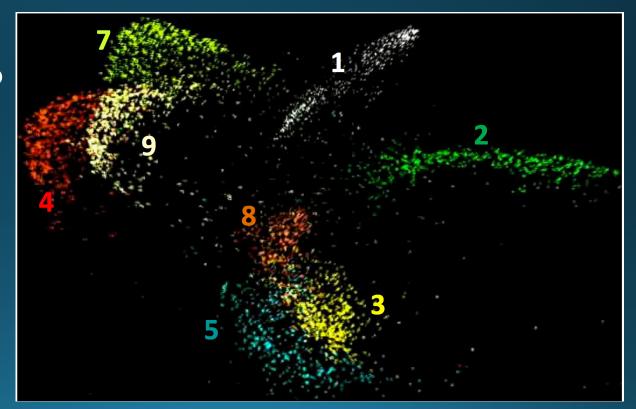
Kernel Methods

Parametric Statistics

- Assume some functional form (Gaussian, Bernoulli, Multinomial, logistic, linear) for
 - $P(X_i|Y)$ and P(Y) as in Naïve Bayes
 - *P(Y|X)* as in Logistic Regression
- Estimate parameters $(\mu, \sigma^2, \theta, w, \beta)$ using MLE/MAP
 - Plug-n-chug
- Advantages: need relatively few data points to learn parameters
- Drawbacks: Strong assumptions rarely satisfied in practice

Embeddings

- Again!
- MNIST, projected into 2D embedding space
- What distribution do these follow?
- Highly nonlinear



Nonparametric Statistics

- Typically very few, if any, distributional assumptions
- Usually requires more data
- Let number of parameters scale with the data

Today

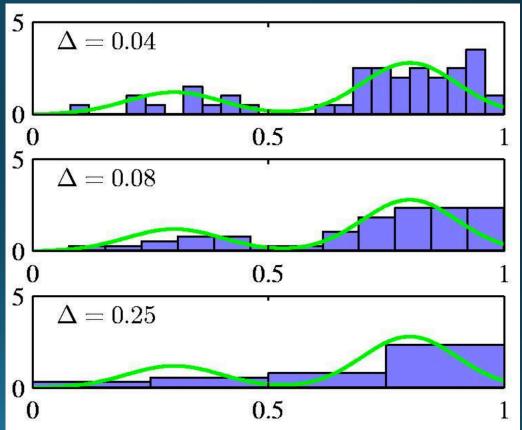
- Kernel density estimation
- K-nearest neighbors classification
- Kernel regression

Density Estimation

- You've done this before histograms!
- Partition feature space into distinct bins with specified widths and count number of observations n_i in each bin

$$\hat{p}(x) = \frac{n_i}{n\Delta_i} \mathbf{1}_{x \in \text{Bin}_i}$$

- Same width is often used for all bins
- Bin width acts as smoothing parameter



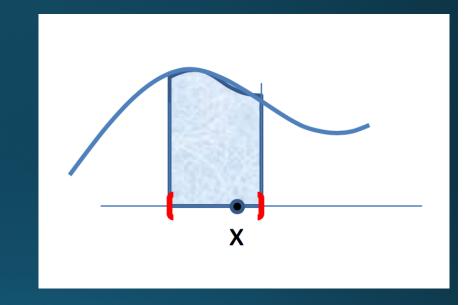
Effect of Δ

• # of bins = $1/\Delta$

$$\hat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$

$$\hat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{X_j \in \text{Bin}_x}}{n}$$

Bias of histogram density estimate



$$\mathbb{E}\left[\hat{p}(x)\right] = \frac{1}{\Delta} P(X \in \operatorname{Bin}_x) = \frac{1}{\Delta} \int_{z \in \operatorname{Bin}_x} p(z) dz \approx \frac{p(x)\Delta}{\Delta}$$

= I Assuming density is roughly constant in each bin (roughly true, if Δ is small)

Bias-Variance Trade-off

- Choice of # of bins
 - if Δ is small
 - if Δ is large

$$\mathbb{E}\left[\hat{p}(x)\right] \approx p(x)$$

$$\mathbb{E}\left[\hat{p}(x)\right] \approx \hat{p}(x)$$

p(x) approximately constant per bin

More data per bin stabilizes estimate

- Bias: how close is mean of estimate to the truth
- Variance: how much does estimate vary around the mean

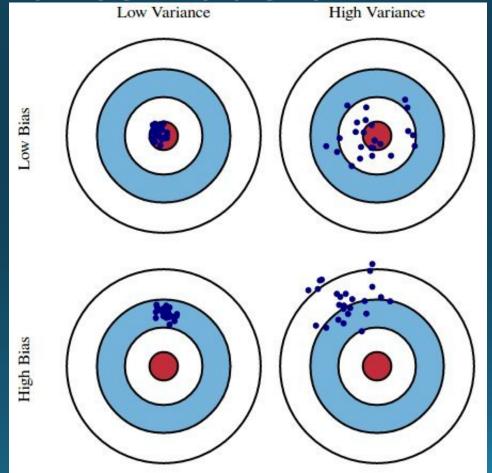
Small Δ , large #bins

"Small bias, Large variance"

Large Δ , small #bins

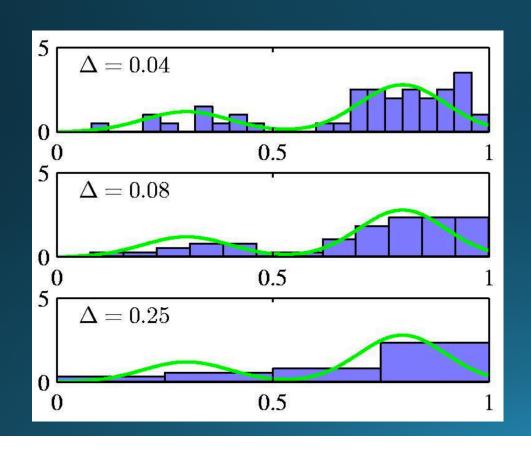
"Large bias, Small variance"

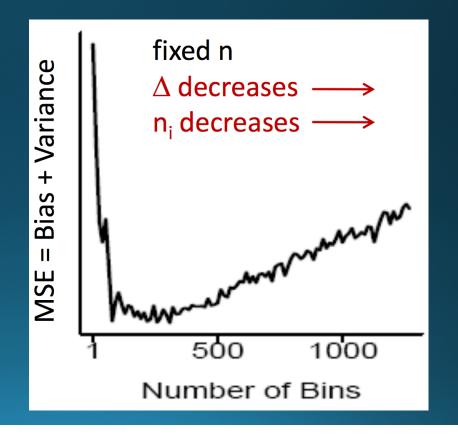
Bias-Variance Trade-off
Low Variance High V



Choice of number of bins $\hat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_x$

$$\hat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \mathrm{Bin}_i}$$





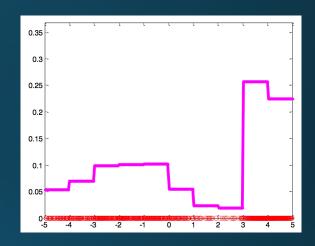
Kernel Density Estimation

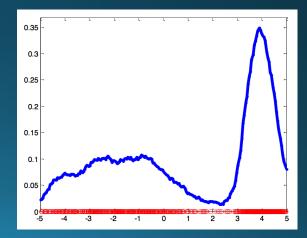
Histograms are "blocky" estimates

$$\hat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{X_j \in \text{Bin}_x}}{n}$$

Kernel density estimate, aka "Parzen / moving window" method

$$\hat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{||X_j - x|| \le \Delta}}{n}$$





Kernel Density Estimation

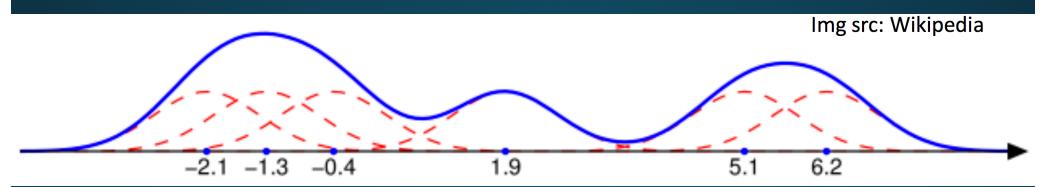
• More generally:

$$\hat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} K\left(\frac{X_j - x}{\Delta}\right)}{n}$$

- K is the kernel function (not to be confused with φ from Kernel PCA)
- Embodies any number of possible kernel functions

Kernel Density Estimation

- Places small "bumps" at each data point, determined by K
- Estimator itself consists of a [normalized] "sum of bumps"



• Where points are denser, density estimate will be higher

Kernels

Any function that satisfies

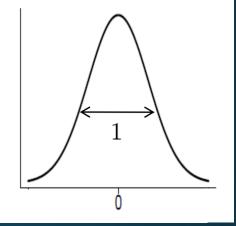
$$K(x) \ge 0$$

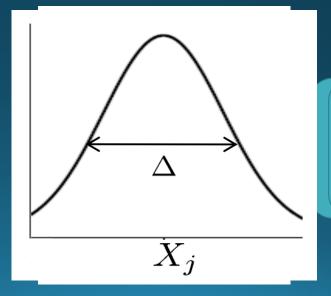
$$\int K(x)dx = 1$$

- SciPy has a ton
 - See "signal.get_window"

Gaussian kernel:

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

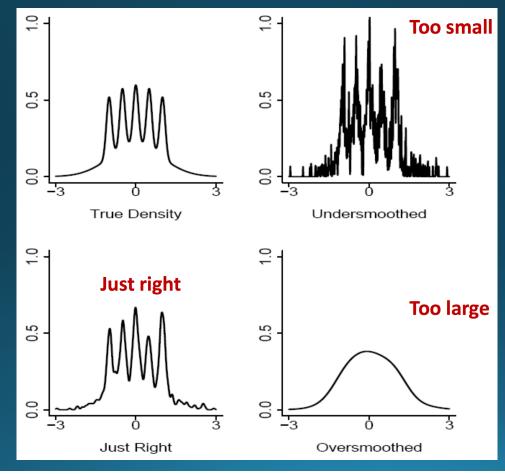




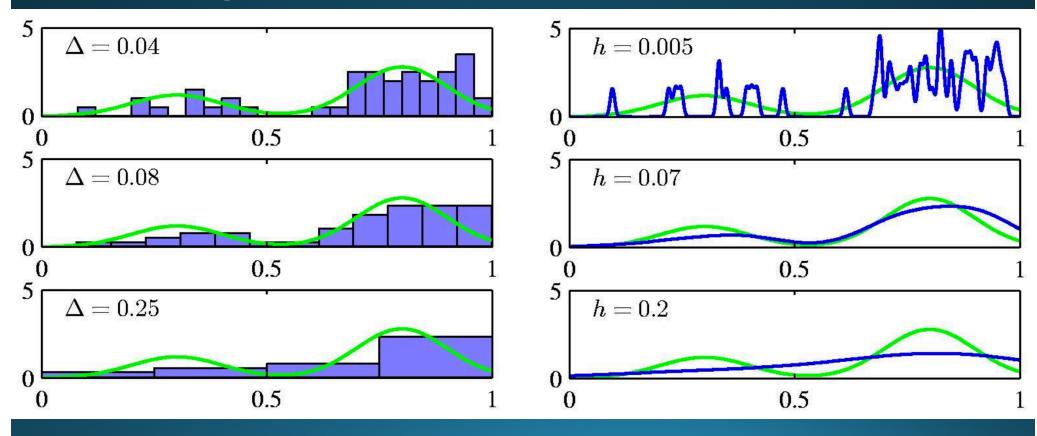
Infinite support: need all points to compute estimate. **But quite popular.**

Choice of kernel bandwidth

The Bart-Simpson Density



Histograms versus KDE



KNN Density Estimation

- Recall
 - Histograms
 - KDE

$$\hat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$

$$\hat{p}(x) = \frac{n_x}{n\Delta}$$

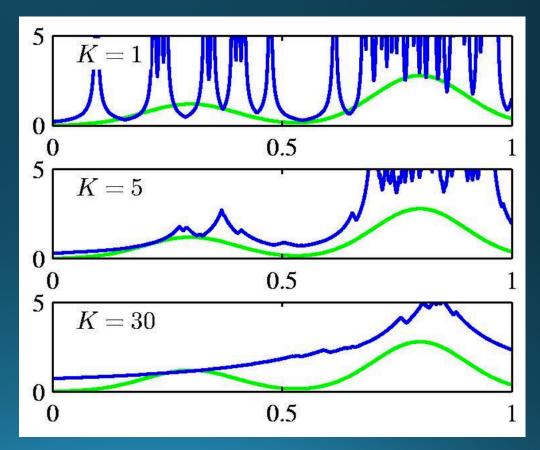
$$\hat{p}(x) = \frac{n_x}{n\Delta}$$

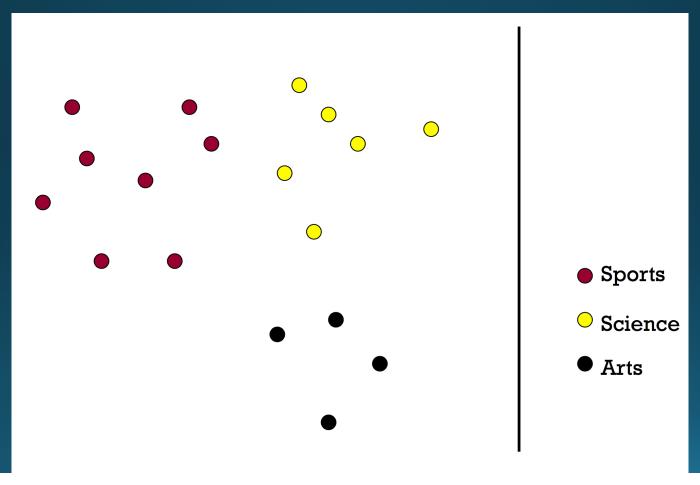
- Fix Δ , estimate number of points within Δ of x (n_i or n_x) from the data
- Fix $n_x = k$, estimate Δ from data (volume of ball around x with k data points)
- KNN Density Estimation

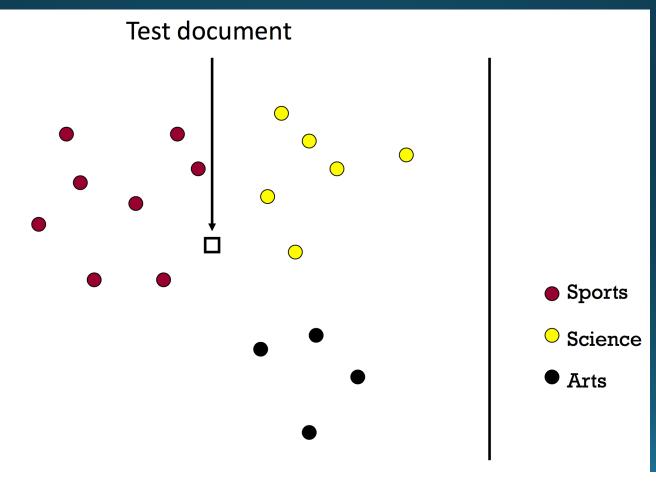
$$\hat{p}(x) = \frac{k}{n\Delta_{k,x}}$$

KNN Density Estimation

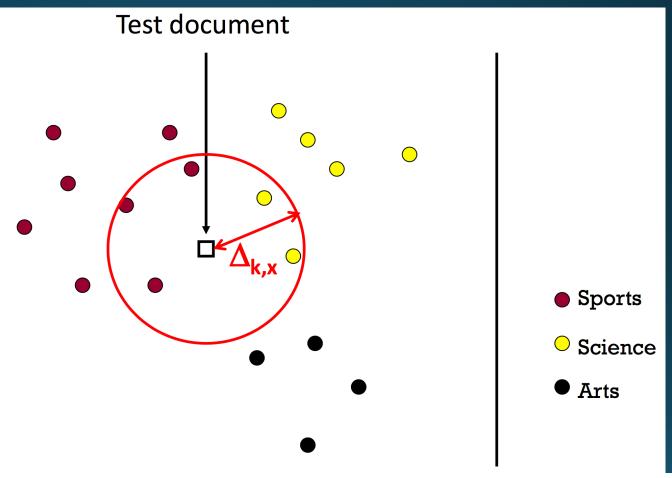
- *k* acts as a smoother
- Not very popular for density estimation
 - Computationally expensive
 - Estimates are poor
- But related version for classification is very popular







- *k* = 4
- What should we predict?
- Average?Majority? Why?



Optimal classifier

$$f^*(x) = \arg \max_{y} P(y|x)$$
$$= \arg \max_{y} P(x|y)P(y)$$

KNN classifier

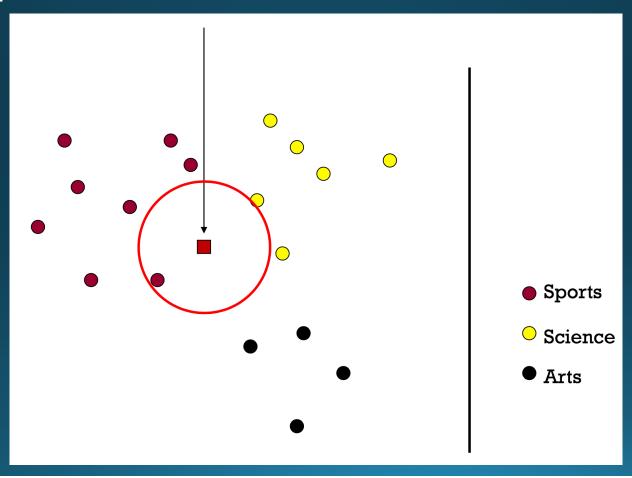
of training points in class y

$$\hat{f}_{kNN}(x) = \arg \max_{y} \hat{p}_{kNN}(x|y)\hat{P}(y)$$
$$= \arg \max_{y} k_{y}$$

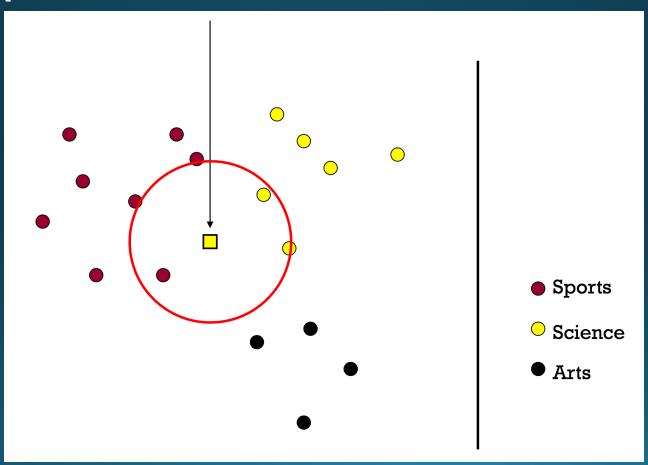
$$\hat{p}_{kNN}(x|y) = \frac{k_y}{n_y \Delta_{k,x}}$$

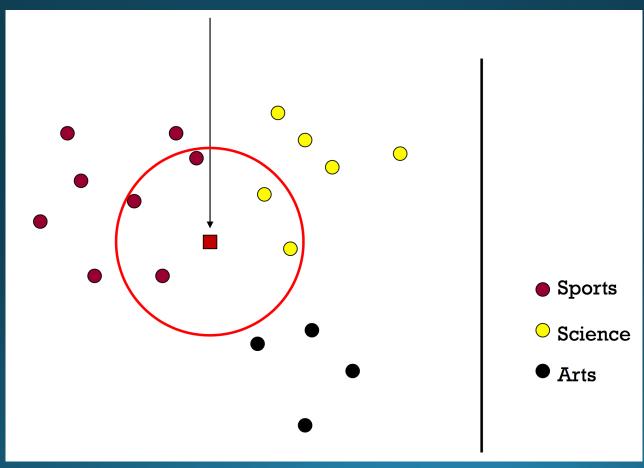
of training points in class y that lie within Δ_k ball

$$\sum_{y} k_y = k \quad \hat{P}(y) = \frac{n_y}{n}$$





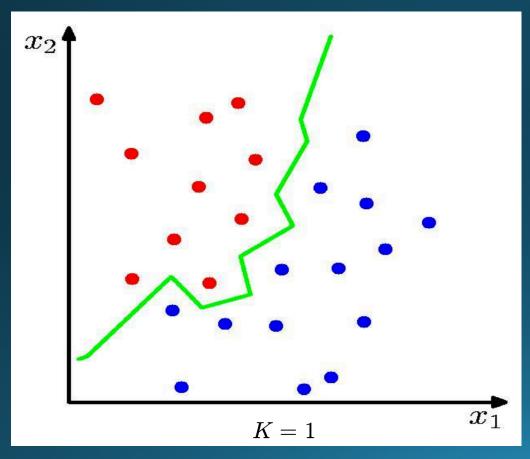




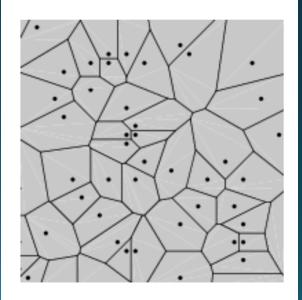
What is the best *k*?

- Bias-variance trade-off
- Large *k* = predicted label is more stable
- **Small k** = predicted label is more accurate
- Similar to density estimation

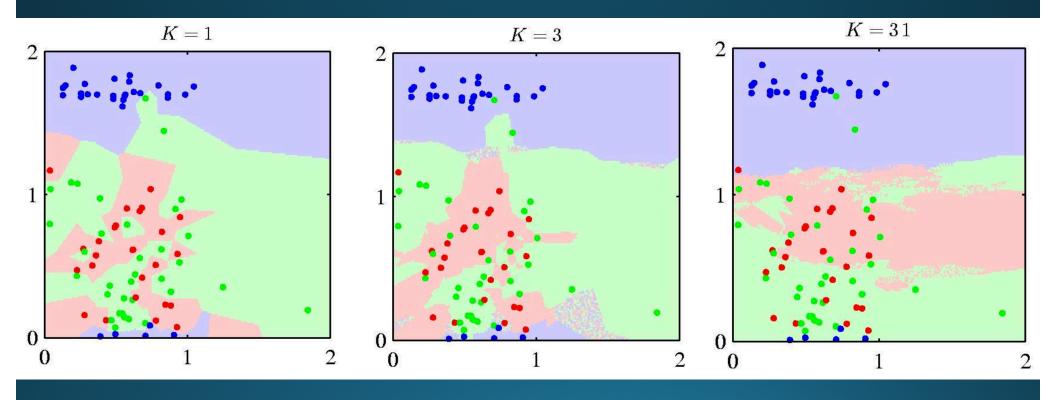
1-NN Decision Boundary



Voronoi Diagram



KNN Decision Boundaries



• Guarantee: For $n \to \infty$, error rate of 1-NN is never more than 2x optimal error rate

Case Study: Newsgroups Classification

- 20 Newsgroups
- 61,118 words
- 18,774 documents
- Class label descriptions

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x	tec motorcycles	sci.crypt sci.electronics sci.med sci.space
misc.forsale	talk.politics.misc talk.politics.guns talk.politics.mideast	talk.religion.misc alt.atheism soc.religion.christian

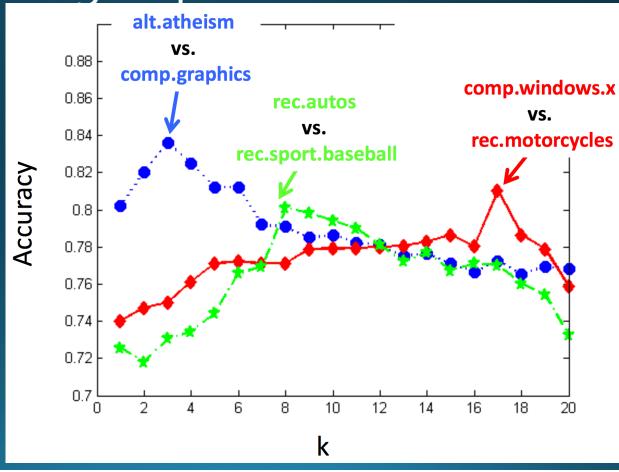
Case Study: Newsgroups Classification

- Training/Testing
 - 50%-50% randomly split
 - 10 runs
 - Report average results
- Evaluation Criteria

$$Accuracy = \frac{\sum_{i \in \textit{test set}} I(\textit{predict}_i = \textit{true label}_i)}{\textit{\# of test samples}}$$

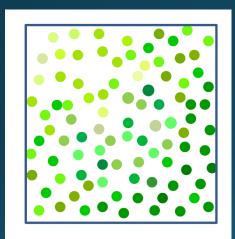
Case Study: Newsgroups Classification

 Results in binary class comparisons



Temperature Sensing

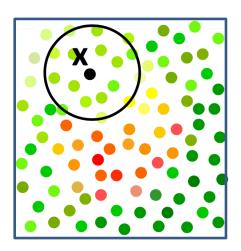
• What is the temperature in the room?



$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Average

at location x?



$$\widehat{T}(x) = \frac{\sum_{i=1}^{n} Y_i \mathbf{1}_{||X_i - x|| \le h}}{\sum_{i=1}^{n} \mathbf{1}_{||X_i - x|| \le h}}$$

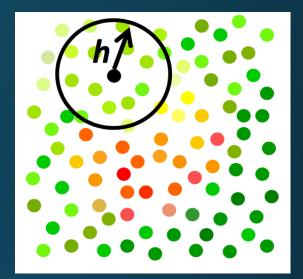
"Local" Average

Kernel Regression

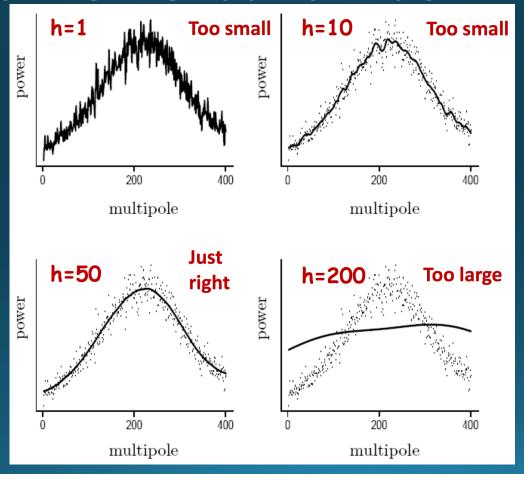
- Or "local" regression
- Nadaraya-Watson Kernel Estimator

$$\hat{f}_n(X) = \sum_{i=1}^n w_i Y_i \quad \dots \text{ where } \quad w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X - X_i}{h}\right)}$$

- Weight each training point on distance to test point
- Boxcar kernel yields local average



Choice of kernel bandwidth



Choice of *kernel* is not terribly important!

Kernel Regression as WLS

 Weighted Least Squares (WLS) has the form

$$\min_{f} \sum_{i=1}^{n} w_i (f(X_i) - Y_i)^2$$

Compare to Nadaraya-Watson form

$$w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X - X_i}{h}\right)}$$

- Kernel regression corresponds to locally constant estimator obtained from [locally] weighted least squares
- Set $f(X_i) = \beta$ where $\pmb{\beta}$ is constant

Kernel Regression as WLS

$$\min_{\beta} \sum_{i=1}^n w_i (\beta - Y_i)^2 \qquad w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X - X_i}{h}\right)}$$

$$\frac{\partial J(\beta)}{\partial \beta} = 2 \sum_{i=1}^{n} w_i (\beta - Y_i) = 0$$

Individual weights have to sum to 1

$$\rightarrow \hat{f}_n(X) = \hat{\beta} = \sum_{i=1}^n w_i Y_i$$

Summary

- Nonparametric places mild assumptions on data; good models for complex data
 - Usually requires storing & computing with full dataset
- Parametric models rely on very strong, simplistic assumptions
 - Once fitted, they are much more efficient with storage and computation
- Effects of bin width & kernel bandwidth
 - Bias-variance trade-off
- KNN classifier
 - Non-linear decision boundaries
- Kernel regression
 - Comparison to weighted least squares

Questions?

Course Details

- Assignment 5 coming out **now**
 - Pushed everything back a week
- Projects start imminently
- Neural networks next!

References

• "All of Nonparametric Statistics", http://www.stat.cmu.edu/~larry/all-of-nonpar/index.html