CSCl 4360/6360 Data Science

Kernel Methods




Parametric Statistics

* Assume some functional form (Gaussian, Bernoulli, Multinomial,
logistic, linear) for
* P(X]|Y) and P(Y) as in Naive Bayes
* P(Y|X) as in Logistic Regression

- Estimate parameters (u, 04,0, w, B) using MLE/MAP
* Plug-n-chug

* Advantages: need relatively few data points to learn parameters
* Drawbacks: Strong assumptions rarely satisfied in practice




Embeddings

* Again!

* MNIST, projected into
2D embedding space

 What distribution do
these follow?

* Highly nonlinear




Nonparametric Statistics

* Typically very few, if any, distributional assumptions
* Usually requires more data
* Let number of parameters scale with the data

* Today
* Kernel density estimation
* K-nearest neighbors classification
* Kernel regression




Density Estimation

* You've done this before—
histograms!

* Partition feature space into
distinct bins with specified
widths and count number of

observations n;in each bin
N n;
e Same width is often used for

all bins

* Bin width acts as smoothing
parameter




Effect of A

e # of bins = 1/A
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* Bias of histogram density estimate
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Assuming density is roughly constant in each bin
(roughly true, if A is small)




Bias-Variance Trade-off

p(x) approximately
constant per bin

e Choice of # of bins

e if Ais small

 if Ais large More data per bin
stabilizes estimate

* Bias: how close is mean of estimate to the truth
* Variance: how much does estimate vary around the mean

Small A, large #bins <> “Small bias, Large variance”

Large A, small #bins <—> “Large bias, Small variance”







Choice of number of bins

fixed n
A decreases ——
n, decreases —>

Bias + Variance

MSE

500 1000
Number of Bins




Kernel Density Estimation

* Histograms are “blocky” estimates
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 Kernel density estimate, aka “Parzen [ moving
window"” method
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Kernel Density Estimation

* More generally:
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* Kis the kernel function (not to be confused with ¢ from Kernel
PCA)

* Embodies any number of possible kernel functions




Kernel Density Estimation

* Places small "bumps” at each data point, determined by K
* Estimator itself consists of a [normalized] “sum of bumps”

Img src: Wikipedia

* Where points are denser, density estimate will be higher




Kerne | S Gaussian kernel :

* Any function that satisfies

) >0

/K Jdzi=l

o SCIPy has a ton Infinite support: need
all points to compute

* See "signal.get_window” estimate. But quite
popular.




Choice o kernel bndwidth

Too small

The Bart-Simpson
Density
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True Density Undersmoothed

Just right
Too large
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Histograms versus KDE




KNN Density Estimation

* Recall

* Histograms
* KDE

* Fix A, estimate number of points within A of x (n; or n,) from the
data

* Fix n, = k, estimate A from data (volume of ball around x with k data
points)

" k
« KNN Density Estimation p(x) =
nAk,a:




KNN Density Estimation

* k acts as a smoother

* Not very popular for density
estimation
* Computationally expensive
e Estimates are poor

* But related version for
classification is very popular




KNN Classification
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KNN Classification

Test document

@ Sports

O Science
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KNN Classification

Test document

s k=4

e What should

we predict?

* Average?
Majority? Why? @ Sports
O Science

® Arts




KNN Classification
f*(xz) = arg max P(y|z)

* Optimal classifier Yy
arg max P(x|y)P(y)
Y

« KNN classifier JeNN (CU) arg mya’XﬁkNN (x|y)P(y)
arg max k,,

# of training points in Yy
classy

k rainin ints in A mn
ﬁkNN (Qj‘y) o L flgisfthat9|123vif§in Z ky =k P(y) —
Yy

nyAk,a: A, ball n
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K even not used
in practice
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What is the best k?

* Bias-variance trade-off

* Large k = predicted label is more stable

* Small k = predicted label is more accurate

* Similar to density estimation




1-NN Decision Boundary

Voronoi
Diagram




KNN Decision Boundaries

e Guarantee: Forn — oo, error rate of 1-NN is never more than 2x
optimal error rate




Case Study: Newsgroups Classification

* 20 Newsgroups
* 61,118 words
* 18,774 documents

* Class label descriptions

comp.graphics
comp.os.ms-windows misc
comp.svs.ibm pc hardware
comp.svs.mac hardware
comp . windows x

rec.autos sci.crvpt
rec_motorcvcles scielectronics
rec_sport baseball scimed
rec_sport hockev scispace

talk politics misc | talk religion misc
misc forsale talk politics guns alt atheism
talk politics mideast soc religion christian




Case Study: Newsgroups Classification

* Training/Testing
* 50%-50% randomly split
* 10runs
* Report average results

* Evaluation Criteria

Z I( predict, — true label.)

iclest set

Accuracy =
“ i of test samples




Case Study: Newsgroups Classification

— alt.atheism

] ] VS.
* Results in binary *I' comp.graphics

class comparisons

comp.windows.x
VS.
rec.motorcycles
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Temperature Sensing

at location x?
* What is the temperature in the room?

“Local” Average




Kernel Regression

* Or “local” regression

* Nadaraya-Watson Kernel Estimator

n

3 e Y. ..where ) —
frn(X) - Y; h w;(X) 5

* Weight each training point on distance to test point

* Boxcar kernel yields local average




Choice of kernel bandwidth

Too small

T
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h=200:. .. Too large

u

J
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multipole

Choice of kernel is not
terribly important!




Kernel Regression as WLS

* Weighted Least Squares (WLS) e« Kernel regression corresponds
has the form to locally constant estimator
obtained from [locally]
weighted least squares

+set f(X;) =0

* Compare to Nadaraya-Watson where B is constant

form K (X—Xi)
vl = S R ()




Kernel Regression as WLS

n
min Z w; (B —Y;)?
B o= A constant
value

0J (B
0p

) ZQZwi(ﬁ—Yi) =1
|

Individual weights have
tosum to 1

— fu(X) =8 = sz‘Yz‘
i=1



Summary

* Nonparametric places mild assumptions on data; good models for
complex data
* Usually requires storing & computing with full dataset

* Parametric models rely on very strong, simplistic assumptions
* Once fitted, they are much more efficient with storage and computation

e Effects of bin width & kernel bandwidth

* Bias-variance trade-off
* KNN classifier

* Non-linear decision boundaries

* Kernel regression
» Comparison to weighted least squares




Questions?




Course Details

* Assignment 5 coming out now
* Pushed everything back a week

* Projects start imminently

* Neural networks next!
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