CSCl 4360/6360 Data Science

Deep Generative Models




Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

The Neural Network Zoo pesr=

Noisy Input
9 Nakoyhopat cull Perceptron (P) Feed Forward (FF)  Radial Basis Network (RBF)
@ Hiddenceu ‘\/.
© FProbablistic Hidden Cell 1 &
iki Hic Ul
@ spiing Hidden Cel Recurrent Neural Network (RNN)  Long / Short Term Memory (LSTM) ~ Gated Recurrent Unit (GRU)
pa o

* http://www.asimovinstitute.org/ oo

@ Matchinput Output Cell

@ recurrent cell

/ @ Memory el Auto Encoder (AE)  Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

@ oifferent Memory Cell
/]

Kernel

© Cconvolution or Pool

Markov Chain (MC)  Hopfield Network (HN) Boltzmann Machine (BM) ~ Restricted BM (RBM) Deep Belief Network (DBN)

Deconvolutional Network (DN)  Deep Convolutional Inverse Graphics Network (DCIGN)

o
oS §
o> %

~

o<

\VAVAVAW

Generative Adversarial Network (GAN)  Liquid State Machine (LSM) ~Extreme Learning Machine (ELM) ~ Echo State Network (ESN)

Kohonen Network (KN) ~ Support Vector Machine (SVM)  Neural Turing Machine (NTM)



http://www.asimovinstitute.org/neural-network-zoo/

The Neural Network Zoo pesr=

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

Noisy Input

& Noisy Input Cell Perceptron (P)
@ riddenceul

@ rrobablistic Hidden Cell

iking Hie i
@ sviing Hidden Cel Recurrent Neural Network (RNN)  Long / Short Term Memory (LSTM) ~ Gated Recurrent Unit (GRU)
o a o

* http://www.asimovinstitute.org/ oo

@ recurrent cell

e
I IeUral l IetWOrk ZOO/ @ wemory cet )
Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

@ oifferent Memory Cell

Kernel
© Cconvolution or Pool

Last week

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)
7 )Y, ),
LN
T \
\>. /

Deconvolutional Network (DN)  Deep Convolutional Inverse Graphics Network (DCI(

N
o
AN
e
“~0

-
W
Pie)

(@)
O
O

ddversarial Network (GAN)  Liquid State Machine (LSM) ~ Extreme Learning Machine (ELM)

VaYaYATAYAS
A

Support Vector Machine (SVM)  Neural Turing Machine (NTM)



http://www.asimovinstitute.org/neural-network-zoo/

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

A mostly complete chart of
'he Neural Network Zoo e
B\

Noisy Input
4 Noisy Input Cell Perceptron (P) Feed Forward (FF)  Radial Basis Network (RBF)
@ riddenceul
@ rrobablistic Hidden Cell
iki Hic Ul
@ spiking Hidden Cel Recurrent Neural Network (RNN)  Long / Short Term Memory (LSTM) ~ Gated Recurrent Unit (GRU)
2"'g pa A=

* http://www.asimovinstitute.org/ ® o se

@ Matchinput Output Cell ) @)
FIRTA
@ recurrent cell * e

/ @ Memory el Rito Encoder (AE)  Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

@ oifferent Memory

I U e S d a y Markov Chain (MC)  Hopfield Netw Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBY

Deconvolutional Network (DN)  Deep Convolutional Inverse Graphics Network (DCIGN)

o v J
O/ ~al
N
O/o\

<

o
o}

el

Generative Adversarial Network (GAN)  Liquid State Machine (LSM) ~Extreme Learning Machine (ELM) ~ Echo State Network (ESN)

\VAVAVAV;
000 0
\/\/\/

0.0 _0

XX X
| XX XX

N VaYaY,
rATATATATAS
'/.\';.\"‘”

Deep Residual Network (DRN) Kohonen Network (KN) ~ Support Vector Machine (SVM)  Neural Turing Machine (NTM)



http://www.asimovinstitute.org/neural-network-zoo/

The Neural Network Zoo

* htt

www.asimovinstitute.or

neural-network-zoo/

© Backfed Input Cell
Input Cell

& Noisy Input Cell

@ riddenceul

@ rrobablistic Hidden Cell

@ spiking Hidden Cell

@ outputcen

@ Matchinput Output Cell

@ recurrent cell

@ wemory celt

@ oiferent Memory Cell
Kernel

© Cconvolution or Pool

Markov Chain (MC)  Hopfield Network (HN) Boltzmann Machine (8M)

Deep Convolutional Network (DCN)

X I XXX

A mostly complete chart of

N e u ra l N Etwo rks Deep Feed Forward (DFF)

12016 Fjodor van Veen - asimovinstitute.org

Perceptron (P) Feed Forward (FF)  Radial Basis Network (RBF)

» et Ot

Recurrent Neural Network (RNN)

it

Long / Short Term Memory (LSTM)

Auto Encoder (AE) ~ Variational AE (VAE) Denoising AE (DAE)

i

Deconvolutional Network (DN)

erative Adversarial Network (GAN)  Liquid State Machine (LSM)

al Network (DRN)

o) e
e e s T TSt

Gated Recurrent Unit (GRU)

Sparse AE (SAE)

&

Restricted BM (RBM) Deep Belief Network (DBN)

Extreme Learning Machine (ELM)

Deep Convolutional Inverse Graphics Network (DCIGN)

Echo State Netwol

Fehine (NTM)



http://www.asimovinstitute.org/neural-network-zoo/

What is a "generative model”?

* Discriminative Discriminative Generative
* Logistic Regression

* Support Vector Machines
* Random Forests

P(Y [ X)

* Generative
e Gaussian Naive Bayes
 Variational Autoencoders
* Adversarial Networks

P(X,Y) and P(Y)




Generative Models

generated distribution true data distribution

p(x)

image space image space




Generative Models

.l.

Direct

Maximum Likelihood .
AN / GAN

Explicit density Implicit density

N o

. : : Markov Chain
Tractable density Approximate density

-Fully visible belief nets GSN
-NADE ST

-MADE Variational Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

models (nonlinear ICA)




Probabilistic Graphical Models

* Arrows represent conditional
dependencies between random variables

P(X1, ... X,) = | | P(X;|parents;)

P(A,B,C,D) = PZZ)IP(B)P(O,DM, B)

* Structure is used in generative models
* Latent generating distribution (hidden)
* Observed variables (influenced by latent vars)



Variational Inference

e What is variational inference? PO(Z) i very easy 'ii",
* Good for learning latent variable

models (i.e., generating pg(x‘Z) S easy 8.3,
distributions of data)

* For each observation x we assign pg(x, Z) IS €aSy @r

a hidden variable z; our model p
describes the joint distribution

between x and z pg(Z\X) i mega—hard ‘i.’?

Of course these are the
things we want to calculate
* Inference is p(z|x)

* Learninginvolves p(x)

po(x) is super-hard &,




Variational Inference

* Rather than learning p(z|x) directly, variational inference
approximates with g(z|x)

* Maximize the evidence lower bound (ELBO)

ELBO(0, 1) = Zlogp e v [po (2| 2y, )]

* This can be wrltten in terms of the “friendly” emojis
po(2) is very easy <, m
Po(x|z) is easy &3, o = — Z E . logg + constant |
pPo(x,2) is easy @, ]
po(x) is super-hard &, = Z E. log &3 — Z E. KL[&]%]

po(z|x) is mega-hard ¥




Recall: Autoencoders
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Denoising Autoencoders

* Define a corruption process, C
C(z|7)
* Autoencoder learns a reconstruction
distribution P s (x |f)

1. Sample a training example x
2. Sample a corrupted version X from C
3. Use (x,X) as a training pair




Denoising Autoencoders

* De-corruption process results in learning a distribution

mean vector

sampled
latent vector

ALY

Decoder
Network

S| 2

(deconv)

standard deviation
vector




Restricted Boltzmann Machines (RBMs)

* Wholly undirected deep network

* Implementation of a probabilistic
graphical model

 Each variable conditionally
independent given neighboring
nodes
* Parameterized by energy
function
1

P (v, k0, h®, h®) = 76 (-BE@,h,h® 19, 6))

* Sampling from deep RBMs is
hard, but training is paradoxically
CERY




Deep Belief Nets (DBNs)

* Connections between layers, but not units
within a layer

Hidden layer 3

* Arguably one of the first successful
applications of modern deep learning
* Hinton 2006 and 2007

» Often built from an RBM template

* Training is nearly intractable

* Posterior has to be approximated through
annealed importance sampling (AIS)

| Visible layer (observed) |




Generative Adversarial Networks (GANS)

There are many interesting recent
development in deep learning...The most
important one, in my opinion, is
adversarial training (also called GAN for
Generative Adversarial Networks). This,
and the variations that are now being
proposed, is the most interesting idea in
the last 10 years in ML.

Yann LeCun




GANSs

* Game-theoretic approach to generative modeling

* Two deep networks: a generator (G) and discriminator (D)

® Generated ® ®
® Example O
Real
Example




GANSs

e Generator * Discriminator

* Input: a random vector z * Input: a “real” data point OR a
synthetic example from G

* Output: something as close to
a “real” data point as possible * Qutput: 1 or o (real or fake)

® ® ® Generated ® ® ®
o ® Example O ®
o Real @
Example




GANSs

* Minimax “"game”
* Generator and Discriminator have competing objectives
* Goal is to find an equilibrium point

min max Eqp,., log D(z) — E. log(1 — D(G(2)))

Maximize the Discriminator’s Minimize the Discriminator’s
likelihood of identifying a real ability to differentiate real data
data example from Generator examplars




D(x) tries to be
near 1

f

Differentiable
function D

f

z sampled from
data

D tries to make
D(G(z)) near 0,
G tries to make
D(G’(z)) near 1

5 sampled from
model

leferentlable
function G

Input noise z

(
e
C
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VAEs versus GANSs

VAEs
Expectation over
learned
distribution results
in blurring

GANs
Samples from
learned distribution,
resulting in sharper
images




GAN Advances

* Progressively grow the GAN subspace over training
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GAN Advances

* Wasserstein objective function
* “"Earth-mover” distance W(q, p)

* Minimum cost of transporting mass in order to transform distribution g
into the distribution p (where cost is mass x distance)

log D(x) — E, log D(z)

mén mgx [

* Gradient is much better behaved than Jenson-Shannon objective
(KL-divergence based)

* Weights are clipped at [-c, cJ
* Takes a lot longer to train on average




GAN Advances

* Improved Wasserstein
* Introduces a gradient penalty on the discriminator output with respect to
Its input
* Instead of hard clipping gradient weights, soft[max] penalties are used

* P,isthe distribution of real data, P, is from the generator, and P, is defined
from sampling uniformly along straight lines between pairs of points
sampled from P.and P,

iin max Bz p, [D(Z)] — Ezwp, [D(2)] + AEswp, ([IVaD(&)[]2 — 1)?]

Original** WGAN Two-sided gradient
objective penalty on Discriminator




DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Baseline (G: DCGAN, D: DCGAN)
e I 7
¢ o {

tanh nonlinearities everywhere in G and D




Open Questions with GANs

G* = minmax V (G, D),
G D
* Mode collapse
* The "Helvetica Scenario” G* = maxmin V(G, D),
* Maps several different inputs z to the same output ba
* Full collapse is rare, but partial collapse is common

Step 10k Step 15k Step 20k Step 25k




Open Questions with GANs

 Evaluation of GANs
* (not specific to GANSs per se, but generative models)
* Models that obtain good likelihoods can generate bad samples

* Models that generate good samples can have poor likelihoods
* Also difficult to evaluate likelihood with GANs




Open Questions with GANs

* Goal is to find Nash equilibrium

* Problem 1: Does it exist?
* No conclusive way to show this

* Problem 2: If it exists, can we find it?
* Inability to find equilibrium can be cause of oscillatory behavior in training
* ...or asign that equilibrium doesn't exist?

* Problem 3: More than finding equilibrium, can generator win?

* Intuitively: to learn as representative a generator as possible, discriminator
should be utterly unable to differentiate between real and fake




Training a GAN

* GANs use a variant of SGD called
simultaneous gradient descent

* Key difference: the latter gives rise to

non-conservative vector fields
* Like Escher’s staircase

* Solution: convert to conservative
vector field

—VL(z) := —o—||v(2)[]5

* New problem: can’t differentiate
between saddle points or equilibria
or negative or positive equilibria
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Open Questions with GANs

* Exploration of the learned manifold

* Advantage of GANs: no a priori assumptions on the underlying
form of the generating distribution

* Disadvantage of GANs: no way to meaningfully interpret the
resulting learned generating distribution

* Manifold walking, interpolation, image algebra, INFO-GANs




Conclusions

* Generative modeling
* Learn a distribution instead of a decision boundary
* Can still be used for classification
* Usually requires more data than discriminative models

* Deep generative modeling
* Denoising & Variational Autoencoders
* Deep Belief Networks
* Restricted Boltzmann Machines

* Generative Adversarial Networks (GANS)
* Game-theoretic generative modeling through dueling deep networks
* Attempt to find Nash equilibrium
* Many numerical and algorithmic limitations but results are impressive




ANY QUESTIONS? |




Course evaluations!

* Open until December 5

http://eval.franklin.uga.edu/
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