CSCI 4360/6360 Data Science II

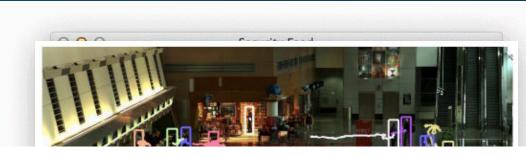
Dense Motion Analysis

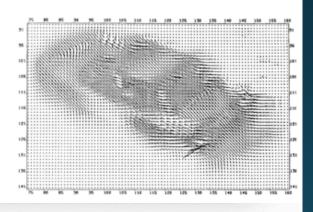
Motion analysis

Core problem in computer vision

Motion analysis

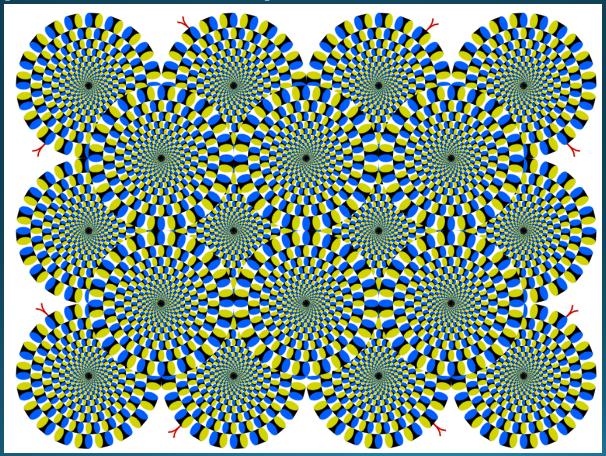
- Object tracking
- Trajectory analysis
- Object finding
- Video enhancement, stabilization, 3D reconstruction, object recognition



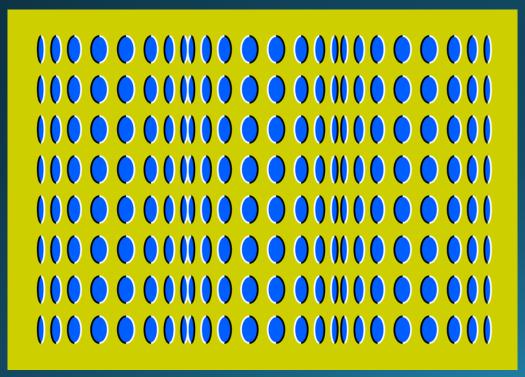


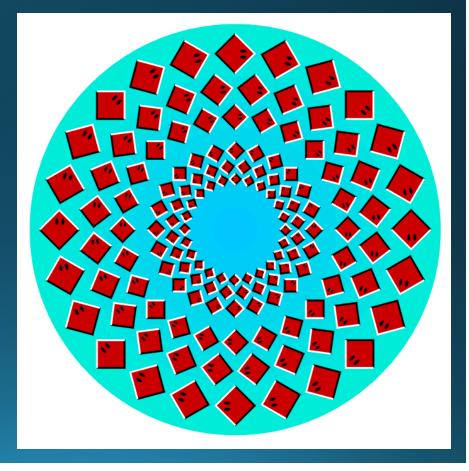
 We can perceive motion where none exists, or not perceive motion where motion exists

(I promise this is a static image)



Other examples

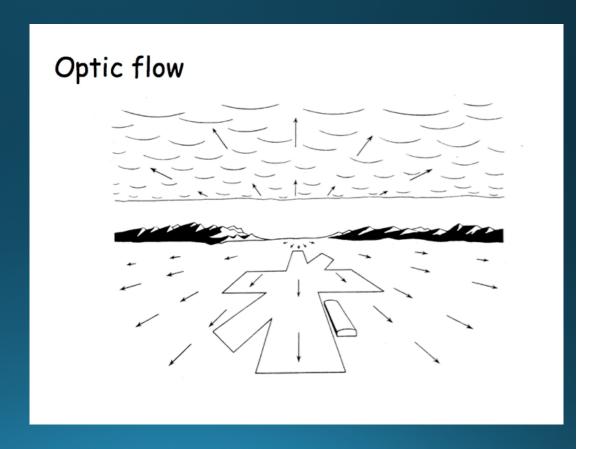




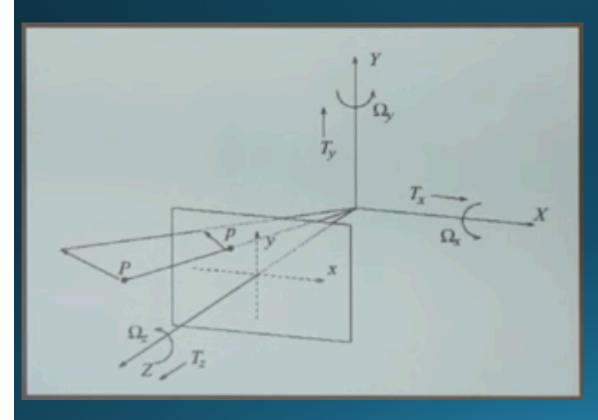
- Shapeless or transparent objects, or limited sight, are problematic
- Computer would not see motion in the previous images (which is good)
- ... computer doesn't "see" in the human sense
- Point being: computers only analyze motion of opaque, solid objects
- Key: motion representation

Representing Motion

- We perceive *optic flow*
- Pattern of flow (vectors)
- Ecological optics J.J. Gibson



Representing Motion

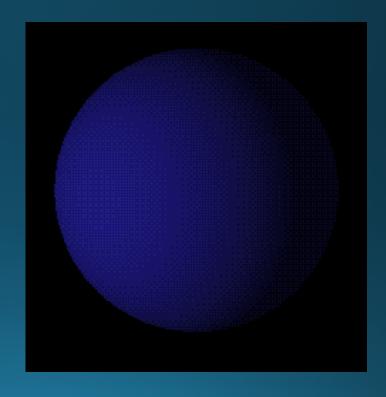


Deviations

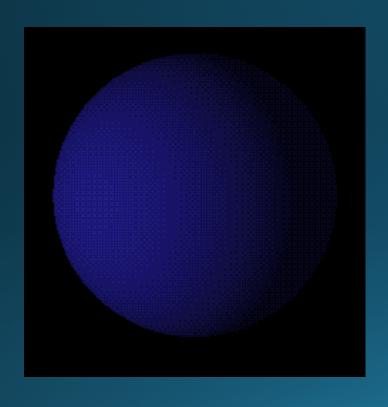
- 3D motion of object is represented as 2D projection losing 1 dimension of information
- Optical flow = 2D velocity describing apparent motion

Thought Experiment 1

- We have a matte ball, rotating
- What does the 2D motion field look like?
- What does the 2D optical flow field look like?



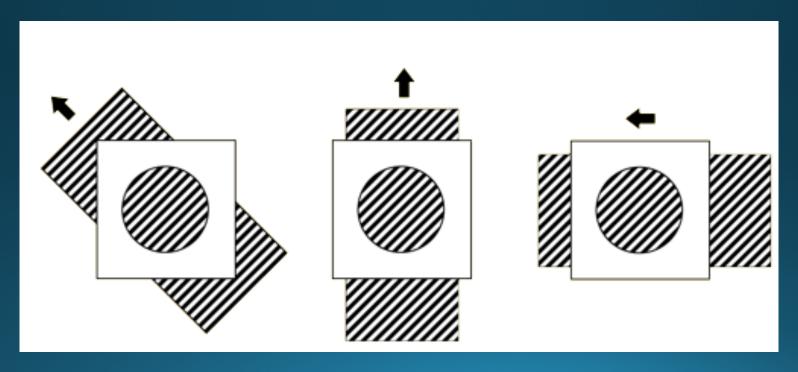
Thought Experiment 2



- We have a matte ball, stationary
- What does the 2D motion field look like?
- What does the 2D optical flow field look like?

Just to throw a wrench in things...

• The Aperture Problem: lighting is not the only source of error.



Aside

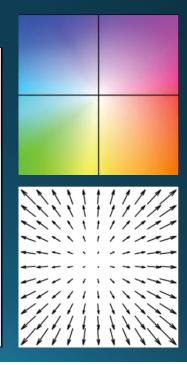
- With all these limitations and pitfalls, it's important to keep the following items in mind (with thanks to Dr. Michael Black):
- We are, more or less, intentionally forgetting any physics we might know
- We are dealing with images
- We're hoping the 2D flow is related to the structure of the world and can be a viable proxy for the motion field
- Fixing the above is important—you could work on it!

Optical Flow

• Motion, or displacement, at all pixels

• Magnitude: saturation

• Orientation: hue



Optical Flow Goals

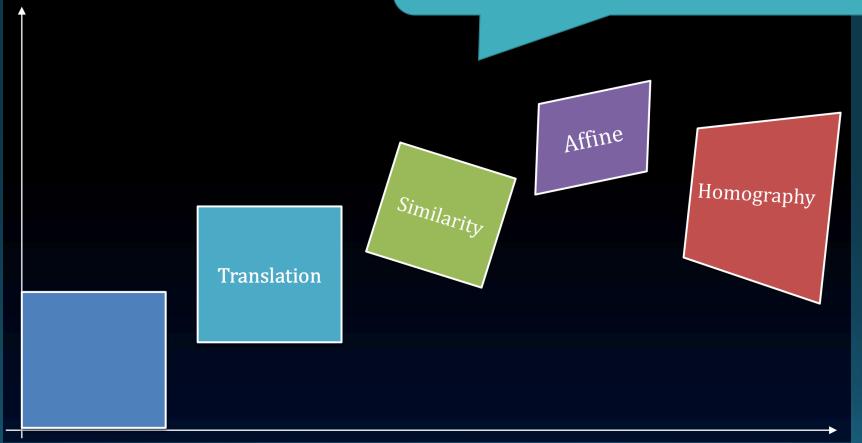
- Find a mapping for each pixel $(x_1, y_1) \rightarrow (x_2, y_2)$
 - Seems simple enough...?
- Motion types
 - Translation
 - Similarity
 - Affine
 - Homography

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + a \\ y_1 + b \end{bmatrix}$$

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = s \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix} \begin{bmatrix} x_1 + a \\ y_1 + b \end{bmatrix}$$

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 + c \\ dx_1 + ey_1 + f \end{bmatrix}$$

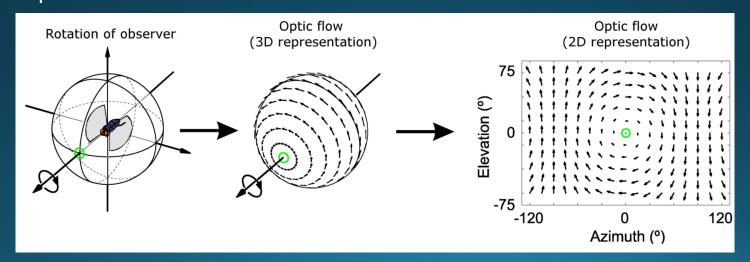
$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \frac{1}{z} \begin{bmatrix} ax_1 + by_1 + c \\ dx_1 + ey_1 + f \end{bmatrix}, z = gx_1 + hy_1$$



Optical Flow Definition

- Image pixel value at time t and location $\mathbf{x} = (x, y)$
- Horizontal u and vertical v components of the flow

$$I(x, y, t)$$
 $u(x, y) \ v(x, y)$



Optical Flow Assumptions

- Brightness Constancy
- Any one patch from frame 1 should look more or less the same as a corresponding spatial patch from frame 2

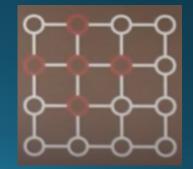
$$I(x + u, y + v, t + 1) = I(x, y, t)$$

Optical Flow Assumptions

- Spatial Smoothness
- Neighboring pixels in an image are likely to belong to the same surface
 - Surfaces are mostly smooth
 - Neighboring pixels have similar flow

$$u_p = u_n$$

$$n \in G(p)$$



Brightness constancy ("data term")

$$E_D(u,v) = \sum_{s} (I(x_s + u_s, y_s + v_s, t + 1) - I(x, y, t))^2$$

- New developments?
 - Squared error implies Gaussian noise!

Spatial term for the flow fields u and v

$$E_S(u,v) = \sum_{n \in G(s)} (u_s - u_n)^2 + \sum_{n \in G(s)} (v_s - v_n)^2$$

- New developments?
 - Flow field is smooth
 - Deviations from smooth are Gaussian
 - First-order smoothness is all that matters
 - Flow derivative is approximated by first differences

$$E(u,v) = E_D(u,v) + \lambda E_S(u,v)$$

$$E(u,v) = \sum_{s} (I(x_s + u_s, y_s + v_s, t + 1) - I(x, y, t))^2$$

$$+ \lambda \left(\sum_{n \in G(s)} (u_s - u_n)^2 + \sum_{n \in G(s)} (v_s - v_n)^2 \right)$$

• So to solve for flow field, we just take derivative, set to o, and solve for *u* and *v*, right?

$$E_D(u,v) = \sum_{s} (I(x_s + u_s, y_s + v_s, t + 1) - I(x, y, t))^2$$

Linear approximation

Taylor series expansion

•
$$dx = u$$
, $dy = v$, $dt = 1$

$$E_D(u, v) = \sum_{s} (I(x_s + u_s, y_s + v_s, t + 1) - I(x, y, t))^2$$

$$I(x,y,t) + dx \frac{\partial}{\partial x} I(x,y,t) + dy \frac{\partial}{\partial y} I(x,y,t) + dt \frac{\partial}{\partial t} I(x,y,t) - I(x,y,t) = 0$$

$$u\frac{\partial}{\partial x}I(x,y,t) + v\frac{\partial}{\partial y}I(x,y,t) + \frac{\partial}{\partial t}I(x,y,t) = 0$$

Constraint equation

$$u\frac{\partial}{\partial x}I(x,y,t) + v\frac{\partial}{\partial y}I(x,y,t) + \frac{\partial}{\partial t}I(x,y,t) = 0$$

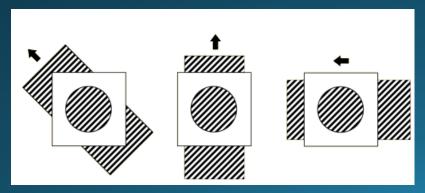
• ...but really, we write it this way:

$$I_x u + I_y v + I_t = 0$$

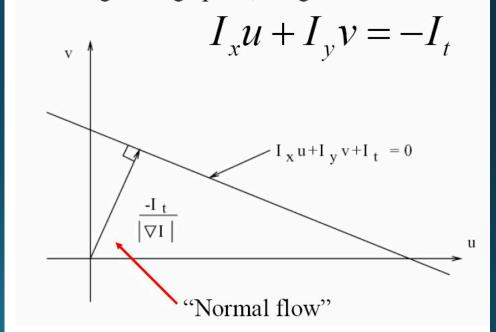
- More new developments
 - Flow is small
 - Image is a differentiable function
 - First-order Taylor series is a good approximation

Form of the constraint equation

- One equation, two unknowns
 - A line
- We know the solution is somewhere along the line
- Ill-posed problem: hence, the Aperture Problem



At a single image pixel, we get a line:



Nevertheless, they persisted

• Horn and Schunck, 1981

$$E(u,v) = \sum_{s} (I_{x,s}u_s + I_{y,s}v_s + I_{t,s})^2 + \lambda \sum_{n \in G(s)} ((u_s - u_n)^2 + (v_s - v_n)^2)$$

• Take partial derivatives with respect to u and v; set to o

$$0 = \sum_{s} (I_{x,s}^{2} u_{s} + I_{x,s} I_{y,s} v_{s} + I_{x,s} I_{t,s}) + \lambda \sum_{n \in G(s)} (u_{s} - u_{n})$$

$$0 = \sum_{s} (I_{x,s} I_{y,s} u_{s} + I_{y,s}^{2} v_{s} + I_{y,s} I_{t,s}) + \lambda \sum_{n \in G(s)} (v_{s} - v_{n})$$

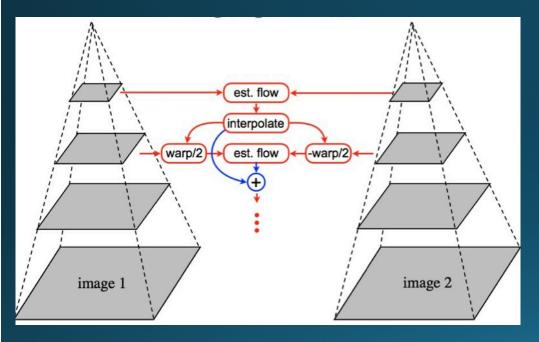
Revisiting assumptions

- Many of the Horn & Schunck '81 problems can be attributed to the fact that they were attempting dense image processing on 1981 computers
- Still, the problems outlined by the assumptions can cause problems in the real-world (aperture problem, ill-posed optimization, assumption of small motion, etc)
- Lots of these assumptions are still outstanding problems but have been addressed, at least in part
- (Check out the 2013 talk by Dr. Michael Black!)

"Flow is small"

• Have you ever seen a Marvel movie?

Coarse-to-fine



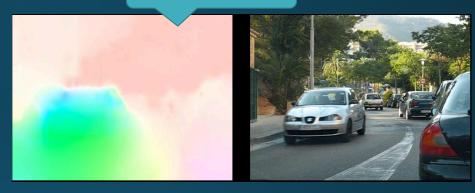
- Build an image "pyramid"
 - Exactly how this is done varies considerably
- Bottom line: flow calculated in original image is much smaller at top of pyramid (i.e., assumptions hold)
- Most optical flow algorithms do something like this

Coarse-to-fine

 This one "small" modification to Horn & Schunck actually gives pretty good results!

Ground Truth

Original



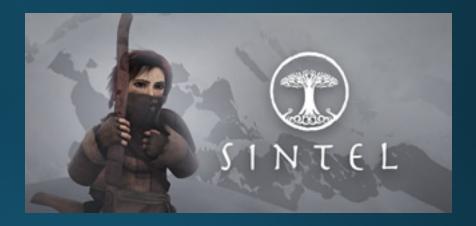
Coarse-to-fine

"Flow is smooth"

- Does brightness constancy hold?
- Are spatial derivatives of optical flow actually Gaussian?
- As machine learning practitioners, how would we answer these questions?
- Need ground truth—unfortunately, these [largely] don't exist

Durien Open Movie Project

- Sintel (full movie—go watch!)
- Made with Blender
- All assets openly available including ground truth optical flow fields
 - 1628 frames of ground truth flow
 - 1024x436 resolution
 - max velocity over 100 ppf
 - separated into training/testing

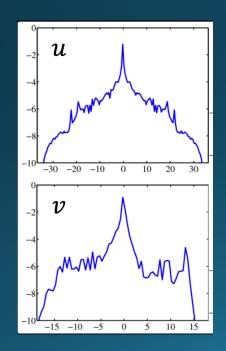


CS Mantra

- We solve one problem (need of ground-truth optical flow) by adding an additional abstraction layer (assume flow statistics of Sintel will generalize)
- ...which usually introduces a new problem
- Will these flow statistics be at all useful for optical flow models outside of action movies?

Flow Statistics

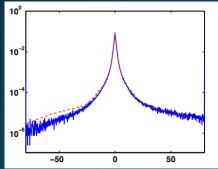
• In general, optical flow fields are sparse (i.e., most flow fields are o)



Flow Statistics

 Using the flow statistics from training data, we can determine that brightness constancy usually holds

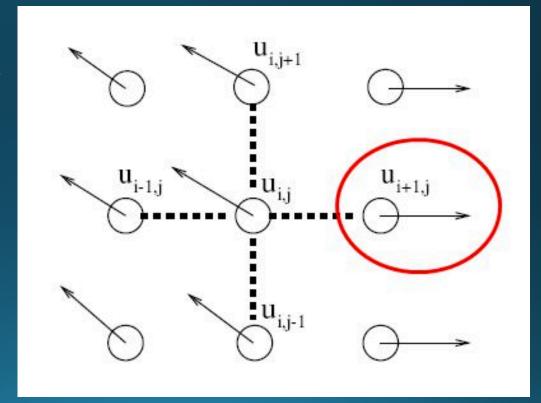
$$I_1(i,j) - I_2(i + u_{i,j}, j + v_{i,j})$$



- Spark peak at o
- Heavy tails are violations of brightness constancy

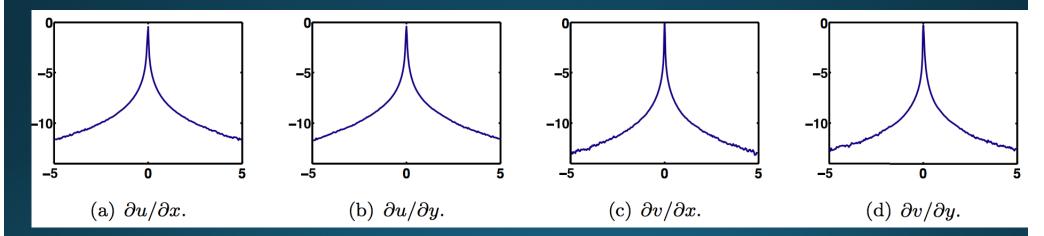
"Neighboring pixels move together"

- Except when they don't
- Could consider these pixels as "spatial outliers"
- But want to consider them as part of different surfaces with different motionsn



Spatial statistics

• Spatial derivatives of the optical flow field u and v



• Similar story: flow is *usually* smooth, but motion boundaries create have heavy tails

Markov Random Fields

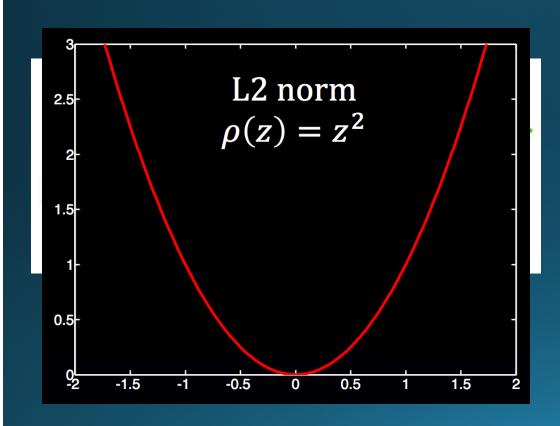
- The heavy tails on the spatial statistics are why optical flow has such problems with *object boundaries*
 - Quadratic smoothness term in objective
- Horn & Schunck [inadvertently?] kicked off 30+ years of research into Markov Random Fields
- Need a "robust" formulation that can handle multiple surfaces moving distinctly from each other

 Replace quadratic terms in original energy function with a new error function that gives less weight to large errors

$$E(u, v) = \sum_{s} \rho(I_{x,s}u_s + I_{y,s}v_s + I_{t,s}, \sigma_D) + \lambda \sum_{n \in G(s)} (\rho(u_s - u_n, \sigma_S) + \rho(v_s - v_n), \sigma_S))$$

Note the rho functions and sigmas

$$\rho(x,\sigma) = \frac{x^2}{x^2 + \sigma^2}$$



- Previous L2 (squared error) is sensitive to outliers
 - Outliers = occasional large flow derivatives
- New error function saturates at larger magnitudes
 - Is **robust to** outliers

- Object boundaries are considerably sharper
- Success! Go home?

Horn and Schunck

Robust

- Optimization is considerably more difficult
- Non-linear in the flow term
- No closed-form solution
- Approaches
 - Gradient descent
 - Graduated non-convexity
 - Iteratively re-weighted least squares

Current Methods

- Current methods employ a combination of
 - Coarse-to-fine (image pyramids)
 - Median filtering (convolutions)
 - Graduated non-convexity
 - Image pre-processing
 - Bicubic interpolation (sparse to dense)
- Layers and segmentation (Sevilla-Lara *et αl* 2016, CVPR)
- Pyramid networks (Ranjan et αl 2016, CVPR)
- Deep convolutional networks (Dosovitskiy and Fischer *et αl* 2015, ICCV)

References

- Dr. Ce Liu's Computer Vision course (lectures 19 and 20) http://people.csail.mit.edu/torralba/courses/6.869/6.869.computer vision.htm
- Dr. Richard Szeliski's book (chapter 8) http://szeliski.org/Book/
- Dr. Michael Black's Optical Flow talk (2013)
 https://www.youtube.com/watch?v=tlwpDuqJqcE
- Sun et αl, "Learning Optical Flow", ECCV 2008
 http://people.seas.harvard.edu/~dqsun/publication/2008/ECCV200

 8.pdf
- Sonia Rao, UGA '20 Computer Science