CSCI 4360/6360 Data Science II

Linear Dynamical Systems

Assignment 1 Lightning Review

Last time...

- Motion analysis via optical flow
- Parametric vs energy-based formulations
- Importance of assumptions
- Modern formulations
 - Robustness to outliers (large optical flow)
 - Relatedness to markov random fields
 - Coarse-to-fine image pyramids

Today

• A specific type of motion: **dynamic textures**

Dynamic textures

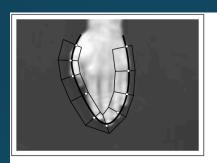
- "Dynamic textured sequences are scenes with complex motion patterns due to interactions between multiple moving components."
- Examples
 - Blowing leaves
 - Flickering flames
 - Water rippling
- Multiple moving components: problematic for optical flow
- How to analyze dynamic textures?

Dynamical Models

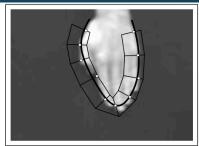
• Goal: an effective procedure for tracking changes over sequences of images, while maintaining a certain coherence of motions

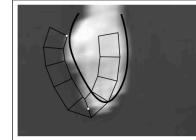
Dynamical Models

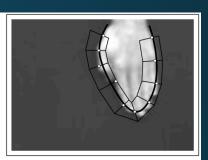
- Hand tracking
- Top row: slow movements
- Bottom row: fast movements
- Fixed curves or priors cannot exploit coherence of motion

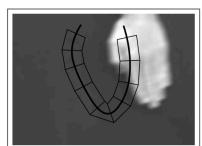












Linear Dynamical Models

• Two main components (using notation from Hyndman 2006):

Appearance Model

$$y_t = Cx_t + u_t$$

State Model

$$x_t = Ax_{t-1} + Wv_t$$

Autoregressive Models

• This is the definition of a 1st-order autoregressive (AR) process!

$$x_t = Ax_{t-1} + Wv_t$$

- Each observation (x_t) is a function of previous observations, plus some noise
- Markov model!

Autoregressive Models

- AR models can have higher orders than 1
- Each observation is dependent on the previous d observations

$$x_t = A_1 x_{t-1} + A_2 x_{t-2} + \dots + A_d x_{t-d} + W v_t$$

Appearance Model

- y_t: image of height h and width w at time t, usually flattened into 1 x hw vector
- x_t: state space vector at time t, 1 x q (where q <<< hw)
- u_t : white Gaussian noise
- C: output matrix, maps between spaces, hw x q

Output matrix

 $y_t = Cx_t + u_t$

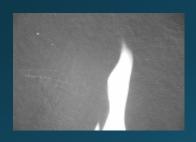
Image in a sequence

Lowdimensional "state"

Noise inherent to the system

Appearance Model

$$y_t = Cx_t + u_t$$



Each of these is 1 column of C.

There are q of them (first 4 shown here).

PC₁

PC₄

Appearance Model

- How do we learn the appearance model?
- Choose state-space dimension size *q*
- Noise term is i.i.d Gaussian

U-hat is a matrix of the first q columns of

$$Y = \left[ec{y}_{1}, ec{y}_{2}, ..., ec{y}_{f}
ight]^{T}$$

$$Y = U\Sigma V^T$$

$$C = \hat{U}$$

$$X = \hat{\Sigma} \hat{V}^T$$

V-hat is a matrix of the first q columns of V, and sigma-hat is a diagonal matrix of the first q singular values

$$y_t = Cx_t + u_t$$

State Model

- x_t and x_{t-1} : state space vectors at times t and t-1, each 1 x q vector
- A: transition matrix, q x q matrix
- W: driving noise, $q \times q$ matrix
- *v_t*: white Gaussian noise

State transition matrix

 $x_t = Ax_{t-1} + Wv_t$

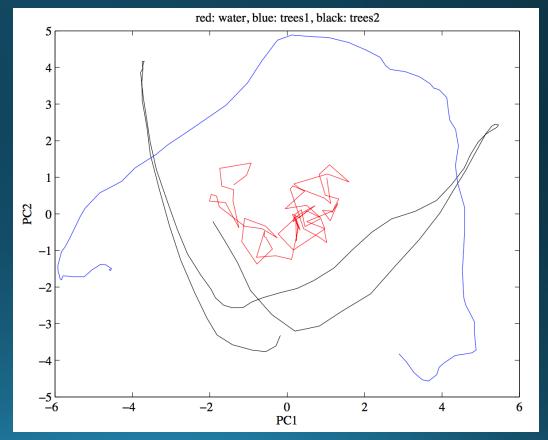
Lowdimensional state at time t Lowdimensional state at *t - 1*

Driving noise

State Model

$$x_t = Ax_{t-1} + Wv_t$$

- Three textures
- q = 2



State Model

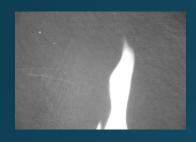
• How do we learn the state model?

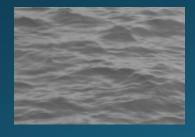
$$x_t = Ax_{t-1} + Wv_t$$

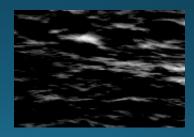
See Assignment 2!

LDS as Generative Models

• Once we've learned the parameters, we can generate new instances







Major strength of LDS!

Problems with LDS

- PCA = Linear + Gaussian
- What if the state space isn't linear, or data aren't Gaussian?
- Nonlinear appearance models
 - Wavelets
 - IsoMap
 - LLE
 - Kernel PCA
 - Laplacian Eigenmaps
- These introduce their own problems!

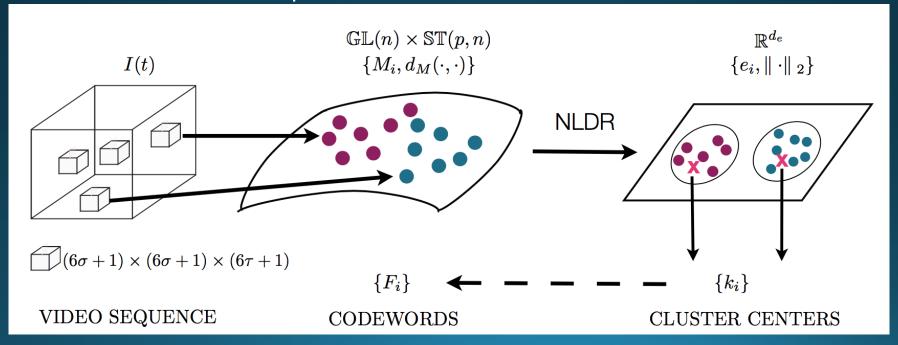
Problems with LDS

- Comparing LDS models
- Given a sequence Y:
- New sequence Y':
- How do we compare these systems?
- Despite linear formulation, θ are NOT Euclidean
- Valid distance metrics include spectral methods and distribution comparators

$$\begin{array}{l} \theta = (C,A,Q) \\ \theta' = (C',A',Q') \end{array} \label{eq:theta_anomaly} \begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\l$$

Comparing LDS

- Select multiple, non-overlapping patches from each video
- Build LDS for each patch



Assignment 2

- Implement LDS!
- Now on AutoLab: due September 17

References

- Hyndman et al, "Higher-order Autoregressive Models for Dynamic Textures", BMVC 2007 http://www.cs.toronto.edu/~fleet/research/Papers/DynamicTextures.pdf
- Shumway and Stoffer, *Time Series Analysis and Its Applications* (3rd ed.), Chapters 3 and 6, http://www.db.ucsd.edu/static/TimeSeries.pdf
- Blake and Isard, *Active Contours*, Chapter 9-11, http://ww.vavlab.ee.boun.edu.tr/courses/574/material/books/blake_Active_Contours.pdf
- Doretto *et al*, "Dynamic Textures", IJCV 2003 https://escholarship.org/uc/item/2m50f2fb
- Woolfe *et al*, "Shift Invariant Dynamic Texture Recognition", ECCV 2006 https://link.springer.com/chapter/10.1007%2F11744047_42?Ll=true
- Ravichandran *et al*, "View-invariant dynamic texture recognition using a bag of dynamical systems", CVPR 2009 http://ieeexplore.ieee.org/abstract/document/5206847/